ns-o-ran-scp-ric-app-kpimon/e2ap/lib/INTEGER.c

1736 lines
45 KiB
C
Raw Permalink Normal View History

/*-
* Copyright (c) 2003-2014 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <INTEGER.h>
#include <asn_codecs_prim.h> /* Encoder and decoder of a primitive type */
#include <errno.h>
/*
* INTEGER basic type description.
*/
static const ber_tlv_tag_t asn_DEF_INTEGER_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (2 << 2))
};
asn_TYPE_operation_t asn_OP_INTEGER = {
INTEGER_free,
INTEGER_print,
INTEGER_compare,
ber_decode_primitive,
INTEGER_encode_der,
INTEGER_decode_xer,
INTEGER_encode_xer,
#ifdef ASN_DISABLE_OER_SUPPORT
0,
0,
#else
INTEGER_decode_oer, /* OER decoder */
INTEGER_encode_oer, /* Canonical OER encoder */
#endif /* ASN_DISABLE_OER_SUPPORT */
#ifdef ASN_DISABLE_PER_SUPPORT
0,
0,
0,
0,
#else
INTEGER_decode_uper, /* Unaligned PER decoder */
INTEGER_encode_uper, /* Unaligned PER encoder */
INTEGER_decode_aper, /* Aligned PER decoder */
INTEGER_encode_aper, /* Aligned PER encoder */
#endif /* ASN_DISABLE_PER_SUPPORT */
INTEGER_random_fill,
0 /* Use generic outmost tag fetcher */
};
asn_TYPE_descriptor_t asn_DEF_INTEGER = {
"INTEGER",
"INTEGER",
&asn_OP_INTEGER,
asn_DEF_INTEGER_tags,
sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]),
asn_DEF_INTEGER_tags, /* Same as above */
sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]),
{ 0, 0, asn_generic_no_constraint },
0, 0, /* No members */
0 /* No specifics */
};
/*
* Encode INTEGER type using DER.
*/
asn_enc_rval_t
INTEGER_encode_der(const asn_TYPE_descriptor_t *td, const void *sptr,
int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb,
void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
asn_enc_rval_t rval;
INTEGER_t effective_integer;
ASN_DEBUG("%s %s as INTEGER (tm=%d)",
cb?"Encoding":"Estimating", td->name, tag_mode);
/*
* Canonicalize integer in the buffer.
* (Remove too long sign extension, remove some first 0x00 bytes)
*/
if(st->buf) {
uint8_t *buf = st->buf;
uint8_t *end1 = buf + st->size - 1;
int shift;
/* Compute the number of superfluous leading bytes */
for(; buf < end1; buf++) {
/*
* If the contents octets of an integer value encoding
* consist of more than one octet, then the bits of the
* first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
switch(*buf) {
case 0x00: if((buf[1] & 0x80) == 0)
continue;
break;
case 0xff: if((buf[1] & 0x80))
continue;
break;
}
break;
}
/* Remove leading superfluous bytes from the integer */
shift = buf - st->buf;
if(shift) {
union {
const uint8_t *c_buf;
uint8_t *nc_buf;
} unconst;
unconst.c_buf = st->buf;
effective_integer.buf = unconst.nc_buf + shift;
effective_integer.size = st->size - shift;
st = &effective_integer;
}
}
rval = der_encode_primitive(td, st, tag_mode, tag, cb, app_key);
if(rval.structure_ptr == &effective_integer) {
rval.structure_ptr = sptr;
}
return rval;
}
static const asn_INTEGER_enum_map_t *INTEGER_map_enum2value(
const asn_INTEGER_specifics_t *specs, const char *lstart,
const char *lstop);
/*
* INTEGER specific human-readable output.
*/
static ssize_t
INTEGER__dump(const asn_TYPE_descriptor_t *td, const INTEGER_t *st, asn_app_consume_bytes_f *cb, void *app_key, int plainOrXER) {
const asn_INTEGER_specifics_t *specs =
(const asn_INTEGER_specifics_t *)td->specifics;
char scratch[32];
uint8_t *buf = st->buf;
uint8_t *buf_end = st->buf + st->size;
intmax_t value;
ssize_t wrote = 0;
char *p;
int ret;
if(specs && specs->field_unsigned)
ret = asn_INTEGER2umax(st, (uintmax_t *)&value);
else
ret = asn_INTEGER2imax(st, &value);
/* Simple case: the integer size is small */
if(ret == 0) {
const asn_INTEGER_enum_map_t *el;
el = (value >= 0 || !specs || !specs->field_unsigned)
? INTEGER_map_value2enum(specs, value) : 0;
if(el) {
if(plainOrXER == 0)
return asn__format_to_callback(cb, app_key,
"%" ASN_PRIdMAX " (%s)", value, el->enum_name);
else
return asn__format_to_callback(cb, app_key,
"<%s/>", el->enum_name);
} else if(plainOrXER && specs && specs->strict_enumeration) {
ASN_DEBUG("ASN.1 forbids dealing with "
"unknown value of ENUMERATED type");
errno = EPERM;
return -1;
} else {
return asn__format_to_callback(cb, app_key,
(specs && specs->field_unsigned)
? "%" ASN_PRIuMAX
: "%" ASN_PRIdMAX,
value);
}
} else if(plainOrXER && specs && specs->strict_enumeration) {
/*
* Here and earlier, we cannot encode the ENUMERATED values
* if there is no corresponding identifier.
*/
ASN_DEBUG("ASN.1 forbids dealing with "
"unknown value of ENUMERATED type");
errno = EPERM;
return -1;
}
/* Output in the long xx:yy:zz... format */
/* TODO: replace with generic algorithm (Knuth TAOCP Vol 2, 4.3.1) */
for(p = scratch; buf < buf_end; buf++) {
const char * const h2c = "0123456789ABCDEF";
if((p - scratch) >= (ssize_t)(sizeof(scratch) - 4)) {
/* Flush buffer */
if(cb(scratch, p - scratch, app_key) < 0)
return -1;
wrote += p - scratch;
p = scratch;
}
*p++ = h2c[*buf >> 4];
*p++ = h2c[*buf & 0x0F];
*p++ = 0x3a; /* ":" */
}
if(p != scratch)
p--; /* Remove the last ":" */
wrote += p - scratch;
return (cb(scratch, p - scratch, app_key) < 0) ? -1 : wrote;
}
/*
* INTEGER specific human-readable output.
*/
int
INTEGER_print(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
ssize_t ret;
(void)ilevel;
if(!st || !st->buf)
ret = cb("<absent>", 8, app_key);
else
ret = INTEGER__dump(td, st, cb, app_key, 0);
return (ret < 0) ? -1 : 0;
}
struct e2v_key {
const char *start;
const char *stop;
const asn_INTEGER_enum_map_t *vemap;
const unsigned int *evmap;
};
static int
INTEGER__compar_enum2value(const void *kp, const void *am) {
const struct e2v_key *key = (const struct e2v_key *)kp;
const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am;
const char *ptr, *end, *name;
/* Remap the element (sort by different criterion) */
el = key->vemap + key->evmap[el - key->vemap];
/* Compare strings */
for(ptr = key->start, end = key->stop, name = el->enum_name;
ptr < end; ptr++, name++) {
if(*ptr != *name || !*name)
return *(const unsigned char *)ptr
- *(const unsigned char *)name;
}
return name[0] ? -1 : 0;
}
static const asn_INTEGER_enum_map_t *
INTEGER_map_enum2value(const asn_INTEGER_specifics_t *specs, const char *lstart,
const char *lstop) {
const asn_INTEGER_enum_map_t *el_found;
int count = specs ? specs->map_count : 0;
struct e2v_key key;
const char *lp;
if(!count) return NULL;
/* Guaranteed: assert(lstart < lstop); */
/* Figure out the tag name */
for(lstart++, lp = lstart; lp < lstop; lp++) {
switch(*lp) {
case 9: case 10: case 11: case 12: case 13: case 32: /* WSP */
case 0x2f: /* '/' */ case 0x3e: /* '>' */
break;
default:
continue;
}
break;
}
if(lp == lstop) return NULL; /* No tag found */
lstop = lp;
key.start = lstart;
key.stop = lstop;
key.vemap = specs->value2enum;
key.evmap = specs->enum2value;
el_found = (asn_INTEGER_enum_map_t *)bsearch(&key,
specs->value2enum, count, sizeof(specs->value2enum[0]),
INTEGER__compar_enum2value);
if(el_found) {
/* Remap enum2value into value2enum */
el_found = key.vemap + key.evmap[el_found - key.vemap];
}
return el_found;
}
static int
INTEGER__compar_value2enum(const void *kp, const void *am) {
long a = *(const long *)kp;
const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am;
long b = el->nat_value;
if(a < b) return -1;
else if(a == b) return 0;
else return 1;
}
const asn_INTEGER_enum_map_t *
INTEGER_map_value2enum(const asn_INTEGER_specifics_t *specs, long value) {
int count = specs ? specs->map_count : 0;
if(!count) return 0;
return (asn_INTEGER_enum_map_t *)bsearch(&value, specs->value2enum,
count, sizeof(specs->value2enum[0]),
INTEGER__compar_value2enum);
}
static int
INTEGER_st_prealloc(INTEGER_t *st, int min_size) {
void *p = MALLOC(min_size + 1);
if(p) {
void *b = st->buf;
st->size = 0;
st->buf = p;
FREEMEM(b);
return 0;
} else {
return -1;
}
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
static enum xer_pbd_rval
INTEGER__xer_body_decode(const asn_TYPE_descriptor_t *td, void *sptr,
const void *chunk_buf, size_t chunk_size) {
const asn_INTEGER_specifics_t *specs =
(const asn_INTEGER_specifics_t *)td->specifics;
INTEGER_t *st = (INTEGER_t *)sptr;
intmax_t dec_value;
intmax_t hex_value = 0;
const char *lp;
const char *lstart = (const char *)chunk_buf;
const char *lstop = lstart + chunk_size;
enum {
ST_LEADSPACE,
ST_SKIPSPHEX,
ST_WAITDIGITS,
ST_DIGITS,
ST_DIGITS_TRAILSPACE,
ST_HEXDIGIT1,
ST_HEXDIGIT2,
ST_HEXDIGITS_TRAILSPACE,
ST_HEXCOLON,
ST_END_ENUM,
ST_UNEXPECTED
} state = ST_LEADSPACE;
const char *dec_value_start = 0; /* INVARIANT: always !0 in ST_DIGITS */
const char *dec_value_end = 0;
if(chunk_size)
ASN_DEBUG("INTEGER body %ld 0x%2x..0x%2x",
(long)chunk_size, *lstart, lstop[-1]);
if(INTEGER_st_prealloc(st, (chunk_size/3) + 1))
return XPBD_SYSTEM_FAILURE;
/*
* We may have received a tag here. It will be processed inline.
* Use strtoul()-like code and serialize the result.
*/
for(lp = lstart; lp < lstop; lp++) {
int lv = *lp;
switch(lv) {
case 0x09: case 0x0a: case 0x0d: case 0x20:
switch(state) {
case ST_LEADSPACE:
case ST_DIGITS_TRAILSPACE:
case ST_HEXDIGITS_TRAILSPACE:
case ST_SKIPSPHEX:
continue;
case ST_DIGITS:
dec_value_end = lp;
state = ST_DIGITS_TRAILSPACE;
continue;
case ST_HEXCOLON:
state = ST_HEXDIGITS_TRAILSPACE;
continue;
default:
break;
}
break;
case 0x2d: /* '-' */
if(state == ST_LEADSPACE) {
dec_value = 0;
dec_value_start = lp;
state = ST_WAITDIGITS;
continue;
}
break;
case 0x2b: /* '+' */
if(state == ST_LEADSPACE) {
dec_value = 0;
dec_value_start = lp;
state = ST_WAITDIGITS;
continue;
}
break;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39:
switch(state) {
case ST_DIGITS: continue;
case ST_SKIPSPHEX: /* Fall through */
case ST_HEXDIGIT1:
hex_value = (lv - 0x30) << 4;
state = ST_HEXDIGIT2;
continue;
case ST_HEXDIGIT2:
hex_value += (lv - 0x30);
state = ST_HEXCOLON;
st->buf[st->size++] = (uint8_t)hex_value;
continue;
case ST_HEXCOLON:
return XPBD_BROKEN_ENCODING;
case ST_LEADSPACE:
dec_value = 0;
dec_value_start = lp;
/* FALL THROUGH */
case ST_WAITDIGITS:
state = ST_DIGITS;
continue;
default:
break;
}
break;
case 0x3c: /* '<', start of XML encoded enumeration */
if(state == ST_LEADSPACE) {
const asn_INTEGER_enum_map_t *el;
el = INTEGER_map_enum2value(
(const asn_INTEGER_specifics_t *)
td->specifics, lstart, lstop);
if(el) {
ASN_DEBUG("Found \"%s\" => %ld",
el->enum_name, el->nat_value);
dec_value = el->nat_value;
state = ST_END_ENUM;
lp = lstop - 1;
continue;
}
ASN_DEBUG("Unknown identifier for INTEGER");
}
return XPBD_BROKEN_ENCODING;
case 0x3a: /* ':' */
if(state == ST_HEXCOLON) {
/* This colon is expected */
state = ST_HEXDIGIT1;
continue;
} else if(state == ST_DIGITS) {
/* The colon here means that we have
* decoded the first two hexadecimal
* places as a decimal value.
* Switch decoding mode. */
ASN_DEBUG("INTEGER re-evaluate as hex form");
state = ST_SKIPSPHEX;
dec_value_start = 0;
lp = lstart - 1;
continue;
} else {
ASN_DEBUG("state %d at %ld", state, (long)(lp - lstart));
break;
}
/* [A-Fa-f] */
case 0x41:case 0x42:case 0x43:case 0x44:case 0x45:case 0x46:
case 0x61:case 0x62:case 0x63:case 0x64:case 0x65:case 0x66:
switch(state) {
case ST_SKIPSPHEX:
case ST_LEADSPACE: /* Fall through */
case ST_HEXDIGIT1:
hex_value = lv - ((lv < 0x61) ? 0x41 : 0x61);
hex_value += 10;
hex_value <<= 4;
state = ST_HEXDIGIT2;
continue;
case ST_HEXDIGIT2:
hex_value += lv - ((lv < 0x61) ? 0x41 : 0x61);
hex_value += 10;
st->buf[st->size++] = (uint8_t)hex_value;
state = ST_HEXCOLON;
continue;
case ST_DIGITS:
ASN_DEBUG("INTEGER re-evaluate as hex form");
state = ST_SKIPSPHEX;
dec_value_start = 0;
lp = lstart - 1;
continue;
default:
break;
}
break;
}
/* Found extra non-numeric stuff */
ASN_DEBUG("INTEGER :: Found non-numeric 0x%2x at %ld",
lv, (long)(lp - lstart));
state = ST_UNEXPECTED;
break;
}
switch(state) {
case ST_END_ENUM:
/* Got a complete and valid enumeration encoded as a tag. */
break;
case ST_DIGITS:
dec_value_end = lstop;
/* FALL THROUGH */
case ST_DIGITS_TRAILSPACE:
/* The last symbol encountered was a digit. */
switch(asn_strtoimax_lim(dec_value_start, &dec_value_end, &dec_value)) {
case ASN_STRTOX_OK:
if(specs && specs->field_unsigned && (uintmax_t) dec_value <= ULONG_MAX) {
break;
} else if(dec_value >= LONG_MIN && dec_value <= LONG_MAX) {
break;
} else {
/*
* We model INTEGER on long for XER,
* to avoid rewriting all the tests at once.
*/
ASN_DEBUG("INTEGER exceeds long range");
}
/* Fall through */
case ASN_STRTOX_ERROR_RANGE:
ASN_DEBUG("INTEGER decode %s hit range limit", td->name);
return XPBD_DECODER_LIMIT;
case ASN_STRTOX_ERROR_INVAL:
case ASN_STRTOX_EXPECT_MORE:
case ASN_STRTOX_EXTRA_DATA:
return XPBD_BROKEN_ENCODING;
}
break;
case ST_HEXCOLON:
case ST_HEXDIGITS_TRAILSPACE:
st->buf[st->size] = 0; /* Just in case termination */
return XPBD_BODY_CONSUMED;
case ST_HEXDIGIT1:
case ST_HEXDIGIT2:
case ST_SKIPSPHEX:
return XPBD_BROKEN_ENCODING;
case ST_LEADSPACE:
/* Content not found */
return XPBD_NOT_BODY_IGNORE;
case ST_WAITDIGITS:
case ST_UNEXPECTED:
ASN_DEBUG("INTEGER: No useful digits (state %d)", state);
return XPBD_BROKEN_ENCODING; /* No digits */
}
/*
* Convert the result of parsing of enumeration or a straight
* decimal value into a BER representation.
*/
if(asn_imax2INTEGER(st, dec_value)) {
ASN_DEBUG("INTEGER decode %s conversion failed", td->name);
return XPBD_SYSTEM_FAILURE;
}
return XPBD_BODY_CONSUMED;
}
asn_dec_rval_t
INTEGER_decode_xer(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td, void **sptr,
const char *opt_mname, const void *buf_ptr, size_t size) {
return xer_decode_primitive(opt_codec_ctx, td,
sptr, sizeof(INTEGER_t), opt_mname,
buf_ptr, size, INTEGER__xer_body_decode);
}
asn_enc_rval_t
INTEGER_encode_xer(const asn_TYPE_descriptor_t *td, const void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
asn_enc_rval_t er = {0,0,0};
(void)ilevel;
(void)flags;
if(!st || !st->buf)
ASN__ENCODE_FAILED;
er.encoded = INTEGER__dump(td, st, cb, app_key, 1);
if(er.encoded < 0) ASN__ENCODE_FAILED;
ASN__ENCODED_OK(er);
}
#ifndef ASN_DISABLE_PER_SUPPORT
asn_dec_rval_t
INTEGER_decode_uper(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, void **sptr,
asn_per_data_t *pd) {
const asn_INTEGER_specifics_t *specs =
(const asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval = { RC_OK, 0 };
INTEGER_t *st = (INTEGER_t *)*sptr;
const asn_per_constraint_t *ct;
int repeat;
(void)opt_codec_ctx;
if(!st) {
st = (INTEGER_t *)(*sptr = CALLOC(1, sizeof(*st)));
if(!st) ASN__DECODE_FAILED;
}
if(!constraints) constraints = td->encoding_constraints.per_constraints;
ct = constraints ? &constraints->value : 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int inext = per_get_few_bits(pd, 1);
if(inext < 0) ASN__DECODE_STARVED;
if(inext) ct = 0;
}
FREEMEM(st->buf);
st->buf = 0;
st->size = 0;
if(ct) {
if(ct->flags & APC_SEMI_CONSTRAINED) {
st->buf = (uint8_t *)CALLOC(1, 2);
if(!st->buf) ASN__DECODE_FAILED;
st->size = 1;
} else if(ct->flags & APC_CONSTRAINED && ct->range_bits >= 0) {
size_t size = (ct->range_bits + 7) >> 3;
st->buf = (uint8_t *)MALLOC(1 + size + 1);
if(!st->buf) ASN__DECODE_FAILED;
st->size = size;
}
}
/* X.691-2008/11, #13.2.2, constrained whole number */
if(ct && ct->flags != APC_UNCONSTRAINED) {
/* #11.5.6 */
ASN_DEBUG("Integer with range %d bits", ct->range_bits);
if(ct->range_bits >= 0) {
if((size_t)ct->range_bits > 8 * sizeof(unsigned long))
ASN__DECODE_FAILED;
if(specs && specs->field_unsigned) {
unsigned long uvalue = 0;
if(uper_get_constrained_whole_number(pd,
&uvalue, ct->range_bits))
ASN__DECODE_STARVED;
ASN_DEBUG("Got value %lu + low %ld",
uvalue, ct->lower_bound);
uvalue += ct->lower_bound;
if(asn_ulong2INTEGER(st, uvalue))
ASN__DECODE_FAILED;
} else {
unsigned long uvalue = 0;
long svalue;
if(uper_get_constrained_whole_number(pd,
&uvalue, ct->range_bits))
ASN__DECODE_STARVED;
ASN_DEBUG("Got value %lu + low %ld",
uvalue, ct->lower_bound);
if(per_long_range_unrebase(uvalue, ct->lower_bound,
ct->upper_bound, &svalue)
|| asn_long2INTEGER(st, svalue)) {
ASN__DECODE_FAILED;
}
}
return rval;
}
} else {
ASN_DEBUG("Decoding unconstrained integer %s", td->name);
}
/* X.691, #12.2.3, #12.2.4 */
do {
ssize_t len = 0;
void *p = NULL;
int ret = 0;
/* Get the PER length */
len = uper_get_length(pd, -1, 0, &repeat);
if(len < 0) ASN__DECODE_STARVED;
p = REALLOC(st->buf, st->size + len + 1);
if(!p) ASN__DECODE_FAILED;
st->buf = (uint8_t *)p;
ret = per_get_many_bits(pd, &st->buf[st->size], 0, 8 * len);
if(ret < 0) ASN__DECODE_STARVED;
st->size += len;
} while(repeat);
st->buf[st->size] = 0; /* JIC */
/* #12.2.3 */
if(ct && ct->lower_bound) {
/*
* TODO: replace by in-place arithmetics.
*/
long value = 0;
if(asn_INTEGER2long(st, &value))
ASN__DECODE_FAILED;
if(asn_imax2INTEGER(st, value + ct->lower_bound))
ASN__DECODE_FAILED;
}
return rval;
}
asn_enc_rval_t
INTEGER_encode_uper(const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, const void *sptr,
asn_per_outp_t *po) {
const asn_INTEGER_specifics_t *specs =
(const asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er = {0,0,0};
const INTEGER_t *st = (const INTEGER_t *)sptr;
const uint8_t *buf;
const uint8_t *end;
const asn_per_constraint_t *ct;
long value = 0;
if(!st || st->size == 0) ASN__ENCODE_FAILED;
if(!constraints) constraints = td->encoding_constraints.per_constraints;
ct = constraints ? &constraints->value : 0;
er.encoded = 0;
if(ct) {
int inext = 0;
if(specs && specs->field_unsigned) {
unsigned long uval;
if(asn_INTEGER2ulong(st, &uval))
ASN__ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(uval < (unsigned long)ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(uval < (unsigned long)ct->lower_bound
|| uval > (unsigned long)ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %lu (%02x/%" ASN_PRI_SIZE ") lb %lu ub %lu %s",
uval, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
value = uval;
} else {
if(asn_INTEGER2long(st, &value))
ASN__ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(value < ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(value < ct->lower_bound
|| value > ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %ld (%02x/%" ASN_PRI_SIZE ") lb %ld ub %ld %s",
value, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
}
if(ct->flags & APC_EXTENSIBLE) {
if(per_put_few_bits(po, inext, 1))
ASN__ENCODE_FAILED;
if(inext) ct = 0;
} else if(inext) {
ASN__ENCODE_FAILED;
}
}
/* X.691-11/2008, #13.2.2, test if constrained whole number */
if(ct && ct->range_bits >= 0) {
unsigned long v;
/* #11.5.6 -> #11.3 */
ASN_DEBUG("Encoding integer %ld (%lu) with range %d bits",
value, value - ct->lower_bound, ct->range_bits);
if(specs && specs->field_unsigned) {
if ( ((unsigned long)ct->lower_bound > (unsigned long)(ct->upper_bound)
|| ((unsigned long)value < (unsigned long)ct->lower_bound))
|| ((unsigned long)value > (unsigned long)ct->upper_bound)
) {
ASN_DEBUG("Value %lu to-be-encoded is outside the bounds [%lu, %lu]!",
value, ct->lower_bound, ct->upper_bound);
ASN__ENCODE_FAILED;
}
v = (unsigned long)value - (unsigned long)ct->lower_bound;
} else {
if(per_long_range_rebase(value, ct->lower_bound, ct->upper_bound, &v)) {
ASN__ENCODE_FAILED;
}
}
if(uper_put_constrained_whole_number_u(po, v, ct->range_bits))
ASN__ENCODE_FAILED;
ASN__ENCODED_OK(er);
}
if(ct && ct->lower_bound) {
ASN_DEBUG("Adjust lower bound to %ld", ct->lower_bound);
/* TODO: adjust lower bound */
ASN__ENCODE_FAILED;
}
for(buf = st->buf, end = st->buf + st->size; buf < end;) {
int need_eom = 0;
ssize_t mayEncode = uper_put_length(po, end - buf, &need_eom);
if(mayEncode < 0)
ASN__ENCODE_FAILED;
if(per_put_many_bits(po, buf, 8 * mayEncode))
ASN__ENCODE_FAILED;
buf += mayEncode;
if(need_eom && uper_put_length(po, 0, 0)) ASN__ENCODE_FAILED;
}
ASN__ENCODED_OK(er);
}
asn_dec_rval_t
INTEGER_decode_aper(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
const asn_INTEGER_specifics_t *specs = (const asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval = { RC_OK, 0 };
INTEGER_t *st = (INTEGER_t *)*sptr;
const asn_per_constraint_t *ct;
int repeat;
(void)opt_codec_ctx;
if(!st) {
st = (INTEGER_t *)(*sptr = CALLOC(1, sizeof(*st)));
if(!st) ASN__DECODE_FAILED;
}
if(!constraints) constraints = td->encoding_constraints.per_constraints;
ct = constraints ? &constraints->value : 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int inext = per_get_few_bits(pd, 1);
if(inext < 0) ASN__DECODE_STARVED;
if(inext) ct = 0;
}
FREEMEM(st->buf);
st->buf = 0;
st->size = 0;
if(ct) {
if(ct->flags & APC_SEMI_CONSTRAINED) {
st->buf = (uint8_t *)CALLOC(1, 2);
if(!st->buf) ASN__DECODE_FAILED;
st->size = 1;
} else if(ct->flags & APC_CONSTRAINED && ct->range_bits >= 0) {
size_t size = (ct->range_bits + 7) >> 3;
st->buf = (uint8_t *)MALLOC(1 + size + 1);
if(!st->buf) ASN__DECODE_FAILED;
st->size = size;
}
}
/* X.691, #12.2.2 */
if(ct && ct->flags != APC_UNCONSTRAINED) {
/* #10.5.6 */
ASN_DEBUG("Integer with range %d bits", ct->range_bits);
if(ct->range_bits >= 0) {
if (ct->range_bits > 16) {
int max_range_bytes = (ct->range_bits >> 3) +
(((ct->range_bits % 8) > 0) ? 1 : 0);
int length = 0, i;
long value = 0;
for (i = 1; ; i++) {
int upper = 1 << i;
if (upper >= max_range_bytes)
break;
}
ASN_DEBUG("Can encode %d (%d bytes) in %d bits", ct->range_bits,
max_range_bytes, i);
if ((length = per_get_few_bits(pd, i)) < 0)
ASN__DECODE_FAILED;
/* X.691 #12.2.6 length determinant + lb (1) */
length += 1;
ASN_DEBUG("Got length %d", length);
if (aper_get_align(pd) != 0)
ASN__DECODE_FAILED;
while (length--) {
int buf = per_get_few_bits(pd, 8);
if (buf < 0)
ASN__DECODE_FAILED;
value += (((long)buf) << (8 * length));
}
value += ct->lower_bound;
if((specs && specs->field_unsigned)
? asn_uint642INTEGER(st, (unsigned long)value)
: asn_int642INTEGER(st, value))
ASN__DECODE_FAILED;
ASN_DEBUG("Got value %ld + low %ld",
value, ct->lower_bound);
} else {
long value = 0;
if (ct->range_bits < 8) {
value = per_get_few_bits(pd, ct->range_bits);
if(value < 0) ASN__DECODE_STARVED;
} else if (ct->range_bits == 8) {
if (aper_get_align(pd) < 0)
ASN__DECODE_FAILED;
value = per_get_few_bits(pd, ct->range_bits);
if(value < 0) ASN__DECODE_STARVED;
} else {
/* Align */
if (aper_get_align(pd) < 0)
ASN__DECODE_FAILED;
value = per_get_few_bits(pd, 16);
if(value < 0) ASN__DECODE_STARVED;
}
value += ct->lower_bound;
if((specs && specs->field_unsigned)
? asn_ulong2INTEGER(st, value)
: asn_long2INTEGER(st, value))
ASN__DECODE_FAILED;
ASN_DEBUG("Got value %ld + low %ld",
value, ct->lower_bound);
}
return rval;
} else {
ASN__DECODE_FAILED;
}
} else {
ASN_DEBUG("Decoding unconstrained integer %s", td->name);
}
/* X.691, #12.2.3, #12.2.4 */
do {
ssize_t len;
void *p;
int ret;
/* Get the PER length */
len = aper_get_length(pd, -1, -1, &repeat);
if(len < 0) ASN__DECODE_STARVED;
p = REALLOC(st->buf, st->size + len + 1);
if(!p) ASN__DECODE_FAILED;
st->buf = (uint8_t *)p;
ret = per_get_many_bits(pd, &st->buf[st->size], 0, 8 * len);
if(ret < 0) ASN__DECODE_STARVED;
st->size += len;
} while(repeat);
st->buf[st->size] = 0; /* JIC */
/* #12.2.3 */
if(ct && ct->lower_bound) {
/*
* TODO: replace by in-place arithmetics.
*/
long value;
if(asn_INTEGER2long(st, &value))
ASN__DECODE_FAILED;
if(asn_long2INTEGER(st, value + ct->lower_bound))
ASN__DECODE_FAILED;
}
return rval;
}
asn_enc_rval_t
INTEGER_encode_aper(const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints,
const void *sptr, asn_per_outp_t *po) {
const asn_INTEGER_specifics_t *specs = (const asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er = {0,0,0};
const INTEGER_t *st = (const INTEGER_t *)sptr;
const uint8_t *buf;
const uint8_t *end;
const asn_per_constraint_t *ct;
long value = 0;
if(!st || st->size == 0) ASN__ENCODE_FAILED;
if(!constraints) constraints = td->encoding_constraints.per_constraints;
ct = constraints ? &constraints->value : 0;
er.encoded = 0;
if(ct) {
int inext = 0;
if(specs && specs->field_unsigned) {
unsigned long uval;
if(asn_INTEGER2ulong(st, &uval))
ASN__ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(uval < (unsigned long)ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(uval < (unsigned long)ct->lower_bound
|| uval > (unsigned long)ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %lu (%02x/%lu) lb %ld ub %ld %s",
uval, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
value = uval;
} else {
if(asn_INTEGER2long(st, &value)) ASN__ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(value < ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(value < ct->lower_bound
|| value > ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %lu (%02x/%lu) lb %ld ub %ld %s",
value, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
}
if(ct->flags & APC_EXTENSIBLE) {
if(per_put_few_bits(po, inext, 1))
ASN__ENCODE_FAILED;
if(inext) ct = 0;
} else if(inext) {
ASN__ENCODE_FAILED;
}
}
/* X.691, #12.2.2 */
if(ct && ct->range_bits >= 0) {
unsigned long v;
/* #10.5.6 */
ASN_DEBUG("Encoding integer %ld (%lu) with range %d bits",
value, value - ct->lower_bound, ct->range_bits);
v = value - ct->lower_bound;
/* #12 <= 8 -> alignment ? */
if (ct->range_bits < 8) {
if(per_put_few_bits(po, 0x00 | v, ct->range_bits))
ASN__ENCODE_FAILED;
} else if (ct->range_bits == 8) {
if(aper_put_align(po) < 0)
ASN__ENCODE_FAILED;
if(per_put_few_bits(po, 0x00 | v, ct->range_bits))
ASN__ENCODE_FAILED;
} else if (ct->range_bits <= 16) {
/* Consume the bytes to align on octet */
if(aper_put_align(po) < 0)
ASN__ENCODE_FAILED;
if(per_put_few_bits(po, 0x0000 | v,
16))
ASN__ENCODE_FAILED;
} else {
/* TODO: extend to >64 bits */
int64_t v64 = v;
int i, j;
int max_range_bytes = (ct->range_bits >> 3) +
(((ct->range_bits % 8) > 0) ? 1 : 0);
for (i = 1; ; i++) {
int upper = 1 << i;
if (upper >= max_range_bytes)
break;
}
for (j = sizeof(int64_t) -1; j != 0; j--) {
int64_t val;
val = v64 >> (j * 8);
if (val != 0)
break;
}
/* Putting length in the minimum number of bits ex: 5 = 3bits */
if (per_put_few_bits(po, j, i))
ASN__ENCODE_FAILED;
/* Consume the bits to align on octet */
if (aper_put_align(po) < 0)
ASN__ENCODE_FAILED;
/* Put the value */
for (i = 0; i <= j; i++) {
if(per_put_few_bits(po, (v64 >> (8 * (j - i))) & 0xff, 8))
ASN__ENCODE_FAILED;
}
}
ASN__ENCODED_OK(er);
}
if(ct && ct->lower_bound) {
ASN_DEBUG("Adjust lower bound to %ld", ct->lower_bound);
/* TODO: adjust lower bound */
ASN__ENCODE_FAILED;
}
for(buf = st->buf, end = st->buf + st->size; buf < end;) {
ssize_t mayEncode = aper_put_length(po, -1, end - buf);
if(mayEncode < 0)
ASN__ENCODE_FAILED;
if(per_put_many_bits(po, buf, 8 * mayEncode))
ASN__ENCODE_FAILED;
buf += mayEncode;
}
ASN__ENCODED_OK(er);
}
#endif /* ASN_DISABLE_PER_SUPPORT */
static intmax_t
asn__integer_convert(const uint8_t *b, const uint8_t *end) {
uintmax_t value;
/* Perform the sign initialization */
/* Actually value = -(*b >> 7); gains nothing, yet unreadable! */
if((*b >> 7)) {
value = (uintmax_t)(-1);
} else {
value = 0;
}
/* Conversion engine */
for(; b < end; b++) {
value = (value << 8) | *b;
}
return value;
}
int
asn_INTEGER2imax(const INTEGER_t *iptr, intmax_t *lptr) {
uint8_t *b, *end;
size_t size;
/* Sanity checking */
if(!iptr || !iptr->buf || !lptr) {
errno = EINVAL;
return -1;
}
/* Cache the begin/end of the buffer */
b = iptr->buf; /* Start of the INTEGER buffer */
size = iptr->size;
end = b + size; /* Where to stop */
if(size > sizeof(intmax_t)) {
uint8_t *end1 = end - 1;
/*
* Slightly more advanced processing,
* able to process INTEGERs with >sizeof(intmax_t) bytes
* when the actual value is small, e.g. for intmax_t == int32_t
* (0x0000000000abcdef INTEGER would yield a fine 0x00abcdef int32_t)
*/
/* Skip out the insignificant leading bytes */
for(; b < end1; b++) {
switch(*b) {
case 0x00: if((b[1] & 0x80) == 0) continue; break;
case 0xff: if((b[1] & 0x80) != 0) continue; break;
}
break;
}
size = end - b;
if(size > sizeof(intmax_t)) {
/* Still cannot fit the sizeof(intmax_t) */
errno = ERANGE;
return -1;
}
}
/* Shortcut processing of a corner case */
if(end == b) {
*lptr = 0;
return 0;
}
*lptr = asn__integer_convert(b, end);
return 0;
}
/* FIXME: negative INTEGER values are silently interpreted as large unsigned ones. */
int
asn_INTEGER2umax(const INTEGER_t *iptr, uintmax_t *lptr) {
uint8_t *b, *end;
uintmax_t value;
size_t size;
if(!iptr || !iptr->buf || !lptr) {
errno = EINVAL;
return -1;
}
b = iptr->buf;
size = iptr->size;
end = b + size;
/* If all extra leading bytes are zeroes, ignore them */
for(; size > sizeof(value); b++, size--) {
if(*b) {
/* Value won't fit into uintmax_t */
errno = ERANGE;
return -1;
}
}
/* Conversion engine */
for(value = 0; b < end; b++)
value = (value << 8) | *b;
*lptr = value;
return 0;
}
int
asn_umax2INTEGER(INTEGER_t *st, uintmax_t value) {
uint8_t *buf;
uint8_t *end;
uint8_t *b;
int shr;
if(value <= ((~(uintmax_t)0) >> 1)) {
return asn_imax2INTEGER(st, value);
}
buf = (uint8_t *)MALLOC(1 + sizeof(value));
if(!buf) return -1;
end = buf + (sizeof(value) + 1);
buf[0] = 0; /* INTEGERs are signed. 0-byte indicates positive. */
for(b = buf + 1, shr = (sizeof(value) - 1) * 8; b < end; shr -= 8, b++)
*b = (uint8_t)(value >> shr);
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = 1 + sizeof(value);
return 0;
}
int
asn_imax2INTEGER(INTEGER_t *st, intmax_t value) {
uint8_t *buf, *bp;
uint8_t *p;
uint8_t *pstart;
uint8_t *pend1;
int littleEndian = 1; /* Run-time detection */
int add;
if(!st) {
errno = EINVAL;
return -1;
}
buf = (uint8_t *)(long *)MALLOC(sizeof(value));
if(!buf) return -1;
if(*(char *)&littleEndian) {
pstart = (uint8_t *)&value + sizeof(value) - 1;
pend1 = (uint8_t *)&value;
add = -1;
} else {
pstart = (uint8_t *)&value;
pend1 = pstart + sizeof(value) - 1;
add = 1;
}
/*
* If the contents octet consists of more than one octet,
* then bits of the first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
for(p = pstart; p != pend1; p += add) {
switch(*p) {
case 0x00: if((*(p+add) & 0x80) == 0)
continue;
break;
case 0xff: if((*(p+add) & 0x80))
continue;
break;
}
break;
}
/* Copy the integer body */
for(bp = buf, pend1 += add; p != pend1; p += add)
*bp++ = *p;
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = bp - buf;
return 0;
}
int
asn_INTEGER2long(const INTEGER_t *iptr, long *l) {
intmax_t v;
if(asn_INTEGER2imax(iptr, &v) == 0) {
if(v < LONG_MIN || v > LONG_MAX) {
errno = ERANGE;
return -1;
}
*l = v;
return 0;
} else {
return -1;
}
}
int
asn_INTEGER2ulong(const INTEGER_t *iptr, unsigned long *l) {
uintmax_t v;
if(asn_INTEGER2umax(iptr, &v) == 0) {
if(v > ULONG_MAX) {
errno = ERANGE;
return -1;
}
*l = v;
return 0;
} else {
return -1;
}
}
int
asn_long2INTEGER(INTEGER_t *st, long value) {
return asn_imax2INTEGER(st, value);
}
int
asn_ulong2INTEGER(INTEGER_t *st, unsigned long value) {
return asn_imax2INTEGER(st, value);
}
int
asn_uint642INTEGER(INTEGER_t *st, uint64_t value) {
uint8_t *buf;
uint8_t *end;
uint8_t *b;
int shr;
if(value <= INT64_MAX)
return asn_int642INTEGER(st, value);
buf = (uint8_t *)MALLOC(1 + sizeof(value));
if(!buf) return -1;
end = buf + (sizeof(value) + 1);
buf[0] = 0;
for(b = buf + 1, shr = (sizeof(value)-1)*8; b < end; shr -= 8, b++)
*b = (uint8_t)(value >> shr);
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = 1 + sizeof(value);
return 0;
}
int
asn_int642INTEGER(INTEGER_t *st, int64_t value) {
uint8_t *buf, *bp;
uint8_t *p;
uint8_t *pstart;
uint8_t *pend1;
int littleEndian = 1; /* Run-time detection */
int add;
if(!st) {
errno = EINVAL;
return -1;
}
buf = (uint8_t *)MALLOC(sizeof(value));
if(!buf) return -1;
if(*(char *)&littleEndian) {
pstart = (uint8_t *)&value + sizeof(value) - 1;
pend1 = (uint8_t *)&value;
add = -1;
} else {
pstart = (uint8_t *)&value;
pend1 = pstart + sizeof(value) - 1;
add = 1;
}
/*
* If the contents octet consists of more than one octet,
* then bits of the first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
for(p = pstart; p != pend1; p += add) {
switch(*p) {
case 0x00: if((*(p+add) & 0x80) == 0)
continue;
break;
case 0xff: if((*(p+add) & 0x80))
continue;
break;
}
break;
}
/* Copy the integer body */
for(pstart = p, bp = buf, pend1 += add; p != pend1; p += add)
*bp++ = *p;
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = bp - buf;
return 0;
}
/*
* Parse the number in the given string until the given *end position,
* returning the position after the last parsed character back using the
* same (*end) pointer.
* WARNING: This behavior is different from the standard strtol/strtoimax(3).
*/
enum asn_strtox_result_e
asn_strtoimax_lim(const char *str, const char **end, intmax_t *intp) {
int sign = 1;
intmax_t value;
#define ASN1_INTMAX_MAX ((~(uintmax_t)0) >> 1)
const intmax_t upper_boundary = ASN1_INTMAX_MAX / 10;
intmax_t last_digit_max = ASN1_INTMAX_MAX % 10;
#undef ASN1_INTMAX_MAX
if(str >= *end) return ASN_STRTOX_ERROR_INVAL;
switch(*str) {
case '-':
last_digit_max++;
sign = -1;
/* FALL THROUGH */
case '+':
str++;
if(str >= *end) {
*end = str;
return ASN_STRTOX_EXPECT_MORE;
}
}
for(value = 0; str < (*end); str++) {
switch(*str) {
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: {
int d = *str - '0';
if(value < upper_boundary) {
value = value * 10 + d;
} else if(value == upper_boundary) {
if(d <= last_digit_max) {
if(sign > 0) {
value = value * 10 + d;
} else {
sign = 1;
value = -value * 10 - d;
}
} else {
*end = str;
return ASN_STRTOX_ERROR_RANGE;
}
} else {
*end = str;
return ASN_STRTOX_ERROR_RANGE;
}
}
continue;
default:
*end = str;
*intp = sign * value;
return ASN_STRTOX_EXTRA_DATA;
}
}
*end = str;
*intp = sign * value;
return ASN_STRTOX_OK;
}
/*
* Parse the number in the given string until the given *end position,
* returning the position after the last parsed character back using the
* same (*end) pointer.
* WARNING: This behavior is different from the standard strtoul/strtoumax(3).
*/
enum asn_strtox_result_e
asn_strtoumax_lim(const char *str, const char **end, uintmax_t *uintp) {
uintmax_t value;
#define ASN1_UINTMAX_MAX ((~(uintmax_t)0))
const uintmax_t upper_boundary = ASN1_UINTMAX_MAX / 10;
uintmax_t last_digit_max = ASN1_UINTMAX_MAX % 10;
#undef ASN1_UINTMAX_MAX
if(str >= *end) return ASN_STRTOX_ERROR_INVAL;
switch(*str) {
case '-':
return ASN_STRTOX_ERROR_INVAL;
case '+':
str++;
if(str >= *end) {
*end = str;
return ASN_STRTOX_EXPECT_MORE;
}
}
for(value = 0; str < (*end); str++) {
switch(*str) {
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: {
unsigned int d = *str - '0';
if(value < upper_boundary) {
value = value * 10 + d;
} else if(value == upper_boundary) {
if(d <= last_digit_max) {
value = value * 10 + d;
} else {
*end = str;
return ASN_STRTOX_ERROR_RANGE;
}
} else {
*end = str;
return ASN_STRTOX_ERROR_RANGE;
}
}
continue;
default:
*end = str;
*uintp = value;
return ASN_STRTOX_EXTRA_DATA;
}
}
*end = str;
*uintp = value;
return ASN_STRTOX_OK;
}
enum asn_strtox_result_e
asn_strtol_lim(const char *str, const char **end, long *lp) {
intmax_t value;
switch(asn_strtoimax_lim(str, end, &value)) {
case ASN_STRTOX_ERROR_RANGE:
return ASN_STRTOX_ERROR_RANGE;
case ASN_STRTOX_ERROR_INVAL:
return ASN_STRTOX_ERROR_INVAL;
case ASN_STRTOX_EXPECT_MORE:
return ASN_STRTOX_EXPECT_MORE;
case ASN_STRTOX_OK:
if(value >= LONG_MIN && value <= LONG_MAX) {
*lp = value;
return ASN_STRTOX_OK;
} else {
return ASN_STRTOX_ERROR_RANGE;
}
case ASN_STRTOX_EXTRA_DATA:
if(value >= LONG_MIN && value <= LONG_MAX) {
*lp = value;
return ASN_STRTOX_EXTRA_DATA;
} else {
return ASN_STRTOX_ERROR_RANGE;
}
}
assert(!"Unreachable");
return ASN_STRTOX_ERROR_INVAL;
}
enum asn_strtox_result_e
asn_strtoul_lim(const char *str, const char **end, unsigned long *ulp) {
uintmax_t value;
switch(asn_strtoumax_lim(str, end, &value)) {
case ASN_STRTOX_ERROR_RANGE:
return ASN_STRTOX_ERROR_RANGE;
case ASN_STRTOX_ERROR_INVAL:
return ASN_STRTOX_ERROR_INVAL;
case ASN_STRTOX_EXPECT_MORE:
return ASN_STRTOX_EXPECT_MORE;
case ASN_STRTOX_OK:
if(value <= ULONG_MAX) {
*ulp = value;
return ASN_STRTOX_OK;
} else {
return ASN_STRTOX_ERROR_RANGE;
}
case ASN_STRTOX_EXTRA_DATA:
if(value <= ULONG_MAX) {
*ulp = value;
return ASN_STRTOX_EXTRA_DATA;
} else {
return ASN_STRTOX_ERROR_RANGE;
}
}
assert(!"Unreachable");
return ASN_STRTOX_ERROR_INVAL;
}
int
INTEGER_compare(const asn_TYPE_descriptor_t *td, const void *aptr,
const void *bptr) {
const INTEGER_t *a = aptr;
const INTEGER_t *b = bptr;
(void)td;
if(a && b) {
if(a->size && b->size) {
int sign_a = (a->buf[0] & 0x80) ? -1 : 1;
int sign_b = (b->buf[0] & 0x80) ? -1 : 1;
if(sign_a < sign_b) return -1;
if(sign_a > sign_b) return 1;
/* The shortest integer wins, unless comparing negatives */
if(a->size < b->size) {
return -1 * sign_a;
} else if(a->size > b->size) {
return 1 * sign_b;
}
return sign_a * memcmp(a->buf, b->buf, a->size);
} else if(a->size) {
int sign = (a->buf[0] & 0x80) ? -1 : 1;
return (1) * sign;
} else if(b->size) {
int sign = (a->buf[0] & 0x80) ? -1 : 1;
return (-1) * sign;
} else {
return 0;
}
} else if(!a && !b) {
return 0;
} else if(!a) {
return -1;
} else {
return 1;
}
}
asn_random_fill_result_t
INTEGER_random_fill(const asn_TYPE_descriptor_t *td, void **sptr,
const asn_encoding_constraints_t *constraints,
size_t max_length) {
const asn_INTEGER_specifics_t *specs =
(const asn_INTEGER_specifics_t *)td->specifics;
asn_random_fill_result_t result_ok = {ARFILL_OK, 1};
asn_random_fill_result_t result_failed = {ARFILL_FAILED, 0};
asn_random_fill_result_t result_skipped = {ARFILL_SKIPPED, 0};
INTEGER_t *st = *sptr;
const asn_INTEGER_enum_map_t *emap;
size_t emap_len;
intmax_t value;
int find_inside_map;
if(max_length == 0) return result_skipped;
if(st == NULL) {
st = (INTEGER_t *)CALLOC(1, sizeof(*st));
if(st == NULL) {
return result_failed;
}
}
if(specs) {
emap = specs->value2enum;
emap_len = specs->map_count;
if(specs->strict_enumeration) {
find_inside_map = emap_len > 0;
} else {
find_inside_map = emap_len ? asn_random_between(0, 1) : 0;
}
} else {
emap = 0;
emap_len = 0;
find_inside_map = 0;
}
if(find_inside_map) {
assert(emap_len > 0);
value = emap[asn_random_between(0, emap_len - 1)].nat_value;
} else {
const asn_per_constraints_t *ct;
static const long variants[] = {
-65536, -65535, -65534, -32769, -32768, -32767, -16385, -16384,
-16383, -257, -256, -255, -254, -129, -128, -127,
-126, -1, 0, 1, 126, 127, 128, 129,
254, 255, 256, 257, 16383, 16384, 16385, 32767,
32768, 32769, 65534, 65535, 65536, 65537};
if(specs && specs->field_unsigned) {
assert(variants[18] == 0);
value = variants[asn_random_between(
18, sizeof(variants) / sizeof(variants[0]) - 1)];
} else {
value = variants[asn_random_between(
0, sizeof(variants) / sizeof(variants[0]) - 1)];
}
if(!constraints) constraints = &td->encoding_constraints;
ct = constraints ? constraints->per_constraints : 0;
if(ct && (ct->value.flags & APC_CONSTRAINED)) {
if(value < ct->value.lower_bound || value > ct->value.upper_bound) {
value = asn_random_between(ct->value.lower_bound,
ct->value.upper_bound);
}
}
}
if(asn_imax2INTEGER(st, value)) {
if(st == *sptr) {
ASN_STRUCT_RESET(*td, st);
} else {
ASN_STRUCT_FREE(*td, st);
}
return result_failed;
} else {
*sptr = st;
result_ok.length = st->size;
return result_ok;
}
}