ns-o-ran-scp-ric-app-kpimon/e2ap/lib/constr_SET_OF.c

1442 lines
38 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003-2017 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <constr_SET_OF.h>
#include <asn_SET_OF.h>
/*
* Number of bytes left for this structure.
* (ctx->left) indicates the number of bytes _transferred_ for the structure.
* (size) contains the number of bytes in the buffer passed.
*/
#define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left)
/*
* If the subprocessor function returns with an indication that it wants
* more data, it may well be a fatal decoding problem, because the
* size is constrained by the <TLV>'s L, even if the buffer size allows
* reading more data.
* For example, consider the buffer containing the following TLVs:
* <T:5><L:1><V> <T:6>...
* The TLV length clearly indicates that one byte is expected in V, but
* if the V processor returns with "want more data" even if the buffer
* contains way more data than the V processor have seen.
*/
#define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size)
/*
* This macro "eats" the part of the buffer which is definitely "consumed",
* i.e. was correctly converted into local representation or rightfully skipped.
*/
#undef ADVANCE
#define ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
ptr = ((const char *)ptr) + num;\
size -= num; \
if(ctx->left >= 0) \
ctx->left -= num; \
consumed_myself += num; \
} while(0)
/*
* Switch to the next phase of parsing.
*/
#undef NEXT_PHASE
#undef PHASE_OUT
#define NEXT_PHASE(ctx) do { \
ctx->phase++; \
ctx->step = 0; \
} while(0)
#define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0)
/*
* Return a standardized complex structure.
*/
#undef RETURN
#define RETURN(_code) do { \
rval.code = _code; \
rval.consumed = consumed_myself;\
return rval; \
} while(0)
/*
* The decoder of the SET OF type.
*/
asn_dec_rval_t
SET_OF_decode_ber(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td, void **struct_ptr,
const void *ptr, size_t size, int tag_mode) {
/*
* Bring closer parts of structure description.
*/
const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics;
const asn_TYPE_member_t *elm = td->elements; /* Single one */
/*
* Parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
ber_tlv_tag_t tlv_tag; /* T from TLV */
asn_dec_rval_t rval; /* Return code from subparsers */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
ASN_DEBUG("Decoding %s as SET OF", td->name);
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) {
RETURN(RC_FAIL);
}
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Start to parse where left previously
*/
switch(ctx->phase) {
case 0:
/*
* PHASE 0.
* Check that the set of tags associated with given structure
* perfectly fits our expectations.
*/
rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size,
tag_mode, 1, &ctx->left, 0);
if(rval.code != RC_OK) {
ASN_DEBUG("%s tagging check failed: %d",
td->name, rval.code);
return rval;
}
if(ctx->left >= 0)
ctx->left += rval.consumed; /* ?Substracted below! */
ADVANCE(rval.consumed);
ASN_DEBUG("Structure consumes %ld bytes, "
"buffer %ld", (long)ctx->left, (long)size);
NEXT_PHASE(ctx);
/* Fall through */
case 1:
/*
* PHASE 1.
* From the place where we've left it previously,
* try to decode the next item.
*/
for(;; ctx->step = 0) {
ssize_t tag_len; /* Length of TLV's T */
if(ctx->step & 1)
goto microphase2;
/*
* MICROPHASE 1: Synchronize decoding.
*/
if(ctx->left == 0) {
ASN_DEBUG("End of SET OF %s", td->name);
/*
* No more things to decode.
* Exit out of here.
*/
PHASE_OUT(ctx);
RETURN(RC_OK);
}
/*
* Fetch the T from TLV.
*/
tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag);
switch(tag_len) {
case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE);
/* Fall through */
case -1: RETURN(RC_FAIL);
}
if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) {
if(LEFT < 2) {
if(SIZE_VIOLATION)
RETURN(RC_FAIL);
else
RETURN(RC_WMORE);
} else if(((const uint8_t *)ptr)[1] == 0) {
/*
* Found the terminator of the
* indefinite length structure.
*/
break;
}
}
/* Outmost tag may be unknown and cannot be fetched/compared */
if(elm->tag != (ber_tlv_tag_t)-1) {
if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) {
/*
* The new list member of expected type has arrived.
*/
} else {
ASN_DEBUG("Unexpected tag %s fixed SET OF %s",
ber_tlv_tag_string(tlv_tag), td->name);
ASN_DEBUG("%s SET OF has tag %s",
td->name, ber_tlv_tag_string(elm->tag));
RETURN(RC_FAIL);
}
}
/*
* MICROPHASE 2: Invoke the member-specific decoder.
*/
ctx->step |= 1; /* Confirm entering next microphase */
microphase2:
/*
* Invoke the member fetch routine according to member's type
*/
rval = elm->type->op->ber_decoder(opt_codec_ctx,
elm->type, &ctx->ptr, ptr, LEFT, 0);
ASN_DEBUG("In %s SET OF %s code %d consumed %d",
td->name, elm->type->name,
rval.code, (int)rval.consumed);
switch(rval.code) {
case RC_OK:
{
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
else
ctx->ptr = 0;
}
break;
case RC_WMORE: /* More data expected */
if(!SIZE_VIOLATION) {
ADVANCE(rval.consumed);
RETURN(RC_WMORE);
}
/* Fall through */
case RC_FAIL: /* Fatal error */
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
RETURN(RC_FAIL);
} /* switch(rval) */
ADVANCE(rval.consumed);
} /* for(all list members) */
NEXT_PHASE(ctx);
case 2:
/*
* Read in all "end of content" TLVs.
*/
while(ctx->left < 0) {
if(LEFT < 2) {
if(LEFT > 0 && ((const char *)ptr)[0] != 0) {
/* Unexpected tag */
RETURN(RC_FAIL);
} else {
RETURN(RC_WMORE);
}
}
if(((const char *)ptr)[0] == 0
&& ((const char *)ptr)[1] == 0) {
ADVANCE(2);
ctx->left++;
} else {
RETURN(RC_FAIL);
}
}
PHASE_OUT(ctx);
}
RETURN(RC_OK);
}
/*
* Internally visible buffer holding a single encoded element.
*/
struct _el_buffer {
uint8_t *buf;
size_t length;
size_t allocated_size;
unsigned bits_unused;
};
/* Append bytes to the above structure */
static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) {
struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr;
if(el_buf->length + size > el_buf->allocated_size) {
size_t new_size = el_buf->allocated_size ? el_buf->allocated_size : 8;
void *p;
do {
new_size <<= 2;
} while(el_buf->length + size > new_size);
p = REALLOC(el_buf->buf, new_size);
if(p) {
el_buf->buf = p;
el_buf->allocated_size = new_size;
} else {
return -1;
}
}
memcpy(el_buf->buf + el_buf->length, buffer, size);
el_buf->length += size;
return 0;
}
static void assert_unused_bits(const struct _el_buffer* p) {
if(p->length) {
assert((p->buf[p->length-1] & ~(0xff << p->bits_unused)) == 0);
} else {
assert(p->bits_unused == 0);
}
}
static int _el_buf_cmp(const void *ap, const void *bp) {
const struct _el_buffer *a = (const struct _el_buffer *)ap;
const struct _el_buffer *b = (const struct _el_buffer *)bp;
size_t common_len;
int ret = 0;
if(a->length < b->length)
common_len = a->length;
else
common_len = b->length;
if (a->buf && b->buf) {
ret = memcmp(a->buf, b->buf, common_len);
}
if(ret == 0) {
if(a->length < b->length)
ret = -1;
else if(a->length > b->length)
ret = 1;
/* Ignore unused bits. */
assert_unused_bits(a);
assert_unused_bits(b);
}
return ret;
}
static void
SET_OF__encode_sorted_free(struct _el_buffer *el_buf, size_t count) {
size_t i;
for(i = 0; i < count; i++) {
FREEMEM(el_buf[i].buf);
}
FREEMEM(el_buf);
}
enum SET_OF__encode_method {
SOES_DER, /* Distinguished Encoding Rules */
SOES_CUPER /* Canonical Unaligned Packed Encoding Rules */
};
static struct _el_buffer *
SET_OF__encode_sorted(const asn_TYPE_member_t *elm,
const asn_anonymous_set_ *list,
enum SET_OF__encode_method method) {
struct _el_buffer *encoded_els;
int edx;
encoded_els =
(struct _el_buffer *)CALLOC(list->count, sizeof(encoded_els[0]));
if(encoded_els == NULL) {
return NULL;
}
/*
* Encode all members.
*/
for(edx = 0; edx < list->count; edx++) {
const void *memb_ptr = list->array[edx];
struct _el_buffer *encoding_el = &encoded_els[edx];
asn_enc_rval_t erval = {0,0,0};
if(!memb_ptr) break;
/*
* Encode the member into the prepared space.
*/
switch(method) {
case SOES_DER:
erval = elm->type->op->der_encoder(elm->type, memb_ptr, 0, elm->tag,
_el_addbytes, encoding_el);
break;
case SOES_CUPER:
erval = uper_encode(elm->type,
elm->encoding_constraints.per_constraints,
memb_ptr, _el_addbytes, encoding_el);
if(erval.encoded != -1) {
size_t extra_bits = erval.encoded % 8;
assert(encoding_el->length == (size_t)(erval.encoded + 7) / 8);
encoding_el->bits_unused = (8 - extra_bits) & 0x7;
}
break;
default:
assert(!"Unreachable");
break;
}
if(erval.encoded < 0) break;
}
if(edx == list->count) {
/*
* Sort the encoded elements according to their encoding.
*/
qsort(encoded_els, list->count, sizeof(encoded_els[0]), _el_buf_cmp);
return encoded_els;
} else {
SET_OF__encode_sorted_free(encoded_els, edx);
return NULL;
}
}
/*
* The DER encoder of the SET OF type.
*/
asn_enc_rval_t
SET_OF_encode_der(const asn_TYPE_descriptor_t *td, const void *sptr,
int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb,
void *app_key) {
const asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
size_t computed_size = 0;
ssize_t encoding_size = 0;
struct _el_buffer *encoded_els;
int edx;
ASN_DEBUG("Estimating size for SET OF %s", td->name);
/*
* Gather the length of the underlying members sequence.
*/
for(edx = 0; edx < list->count; edx++) {
void *memb_ptr = list->array[edx];
asn_enc_rval_t erval = {0,0,0};
if(!memb_ptr) ASN__ENCODE_FAILED;
erval =
elm->type->op->der_encoder(elm->type, memb_ptr, 0, elm->tag, 0, 0);
if(erval.encoded == -1) return erval;
computed_size += erval.encoded;
}
/*
* Encode the TLV for the sequence itself.
*/
encoding_size =
der_write_tags(td, computed_size, tag_mode, 1, tag, cb, app_key);
if(encoding_size < 0) {
ASN__ENCODE_FAILED;
}
computed_size += encoding_size;
if(!cb || list->count == 0) {
asn_enc_rval_t erval = {0,0,0};
erval.encoded = computed_size;
ASN__ENCODED_OK(erval);
}
ASN_DEBUG("Encoding members of %s SET OF", td->name);
/*
* DER mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the
* encoded elements.
*/
encoded_els = SET_OF__encode_sorted(elm, list, SOES_DER);
/*
* Report encoded elements to the application.
* Dispose of temporary sorted members table.
*/
for(edx = 0; edx < list->count; edx++) {
struct _el_buffer *encoded_el = &encoded_els[edx];
/* Report encoded chunks to the application */
if(cb(encoded_el->buf, encoded_el->length, app_key) < 0) {
break;
} else {
encoding_size += encoded_el->length;
}
}
SET_OF__encode_sorted_free(encoded_els, list->count);
if(edx == list->count) {
asn_enc_rval_t erval = {0,0,0};
assert(computed_size == (size_t)encoding_size);
erval.encoded = computed_size;
ASN__ENCODED_OK(erval);
} else {
ASN__ENCODE_FAILED;
}
}
#undef XER_ADVANCE
#define XER_ADVANCE(num_bytes) do { \
size_t num = num_bytes; \
buf_ptr = ((const char *)buf_ptr) + num;\
size -= num; \
consumed_myself += num; \
} while(0)
/*
* Decode the XER (XML) data.
*/
asn_dec_rval_t
SET_OF_decode_xer(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td, void **struct_ptr,
const char *opt_mname, const void *buf_ptr, size_t size) {
/*
* Bring closer parts of structure description.
*/
const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics;
const asn_TYPE_member_t *element = td->elements;
const char *elm_tag;
const char *xml_tag = opt_mname ? opt_mname : td->xml_tag;
/*
* ... and parts of the structure being constructed.
*/
void *st = *struct_ptr; /* Target structure. */
asn_struct_ctx_t *ctx; /* Decoder context */
asn_dec_rval_t rval = {RC_OK, 0};/* Return value from a decoder */
ssize_t consumed_myself = 0; /* Consumed bytes from ptr */
/*
* Create the target structure if it is not present already.
*/
if(st == 0) {
st = *struct_ptr = CALLOC(1, specs->struct_size);
if(st == 0) RETURN(RC_FAIL);
}
/* Which tag is expected for the downstream */
if(specs->as_XMLValueList) {
elm_tag = (specs->as_XMLValueList == 1) ? 0 : "";
} else {
elm_tag = (*element->name)
? element->name : element->type->xml_tag;
}
/*
* Restore parsing context.
*/
ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset);
/*
* Phases of XER/XML processing:
* Phase 0: Check that the opening tag matches our expectations.
* Phase 1: Processing body and reacting on closing tag.
* Phase 2: Processing inner type.
*/
for(; ctx->phase <= 2;) {
pxer_chunk_type_e ch_type; /* XER chunk type */
ssize_t ch_size; /* Chunk size */
xer_check_tag_e tcv; /* Tag check value */
/*
* Go inside the inner member of a set.
*/
if(ctx->phase == 2) {
asn_dec_rval_t tmprval = {RC_OK, 0};
/* Invoke the inner type decoder, m.b. multiple times */
ASN_DEBUG("XER/SET OF element [%s]", elm_tag);
tmprval = element->type->op->xer_decoder(opt_codec_ctx,
element->type, &ctx->ptr, elm_tag,
buf_ptr, size);
if(tmprval.code == RC_OK) {
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
if(ASN_SET_ADD(list, ctx->ptr) != 0)
RETURN(RC_FAIL);
ctx->ptr = 0;
XER_ADVANCE(tmprval.consumed);
} else {
XER_ADVANCE(tmprval.consumed);
RETURN(tmprval.code);
}
ctx->phase = 1; /* Back to body processing */
ASN_DEBUG("XER/SET OF phase => %d", ctx->phase);
/* Fall through */
}
/*
* Get the next part of the XML stream.
*/
ch_size = xer_next_token(&ctx->context,
buf_ptr, size, &ch_type);
if(ch_size == -1) {
RETURN(RC_FAIL);
} else {
switch(ch_type) {
case PXER_WMORE:
RETURN(RC_WMORE);
case PXER_COMMENT: /* Got XML comment */
case PXER_TEXT: /* Ignore free-standing text */
XER_ADVANCE(ch_size); /* Skip silently */
continue;
case PXER_TAG:
break; /* Check the rest down there */
}
}
tcv = xer_check_tag(buf_ptr, ch_size, xml_tag);
ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s",
tcv, ctx->phase, xml_tag);
switch(tcv) {
case XCT_CLOSING:
if(ctx->phase == 0) break;
ctx->phase = 0;
/* Fall through */
case XCT_BOTH:
if(ctx->phase == 0) {
/* No more things to decode */
XER_ADVANCE(ch_size);
ctx->phase = 3; /* Phase out */
RETURN(RC_OK);
}
/* Fall through */
case XCT_OPENING:
if(ctx->phase == 0) {
XER_ADVANCE(ch_size);
ctx->phase = 1; /* Processing body phase */
continue;
}
/* Fall through */
case XCT_UNKNOWN_OP:
case XCT_UNKNOWN_BO:
ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase);
if(ctx->phase == 1) {
/*
* Process a single possible member.
*/
ctx->phase = 2;
continue;
}
/* Fall through */
default:
break;
}
ASN_DEBUG("Unexpected XML tag in SET OF");
break;
}
ctx->phase = 3; /* "Phase out" on hard failure */
RETURN(RC_FAIL);
}
typedef struct xer_tmp_enc_s {
void *buffer;
size_t offset;
size_t size;
} xer_tmp_enc_t;
static int
SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) {
xer_tmp_enc_t *t = (xer_tmp_enc_t *)key;
if(t->offset + size >= t->size) {
size_t newsize = (t->size << 2) + size;
void *p = REALLOC(t->buffer, newsize);
if(!p) return -1;
t->buffer = p;
t->size = newsize;
}
memcpy((char *)t->buffer + t->offset, buffer, size);
t->offset += size;
return 0;
}
static int
SET_OF_xer_order(const void *aptr, const void *bptr) {
const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr;
const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr;
size_t minlen = a->offset;
int ret;
if(b->offset < minlen) minlen = b->offset;
/* Well-formed UTF-8 has this nice lexicographical property... */
ret = memcmp(a->buffer, b->buffer, minlen);
if(ret != 0) return ret;
if(a->offset == b->offset)
return 0;
if(a->offset == minlen)
return -1;
return 1;
}
asn_enc_rval_t
SET_OF_encode_xer(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb,
void *app_key) {
asn_enc_rval_t er = {0,0,0};
const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics;
const asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
const char *mname = specs->as_XMLValueList
? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag);
size_t mlen = mname ? strlen(mname) : 0;
int xcan = (flags & XER_F_CANONICAL);
xer_tmp_enc_t *encs = 0;
size_t encs_count = 0;
void *original_app_key = app_key;
asn_app_consume_bytes_f *original_cb = cb;
int i;
if(!sptr) ASN__ENCODE_FAILED;
if(xcan) {
encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0]));
if(!encs) ASN__ENCODE_FAILED;
cb = SET_OF_encode_xer_callback;
}
er.encoded = 0;
for(i = 0; i < list->count; i++) {
asn_enc_rval_t tmper = {0,0,0};
void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
if(encs) {
memset(&encs[encs_count], 0, sizeof(encs[0]));
app_key = &encs[encs_count];
encs_count++;
}
if(mname) {
if(!xcan) ASN__TEXT_INDENT(1, ilevel);
ASN__CALLBACK3("<", 1, mname, mlen, ">", 1);
}
if(!xcan && specs->as_XMLValueList == 1)
ASN__TEXT_INDENT(1, ilevel + 1);
tmper = elm->type->op->xer_encoder(elm->type, memb_ptr,
ilevel + (specs->as_XMLValueList != 2),
flags, cb, app_key);
if(tmper.encoded == -1) return tmper;
er.encoded += tmper.encoded;
if(tmper.encoded == 0 && specs->as_XMLValueList) {
const char *name = elm->type->xml_tag;
size_t len = strlen(name);
ASN__CALLBACK3("<", 1, name, len, "/>", 2);
}
if(mname) {
ASN__CALLBACK3("</", 2, mname, mlen, ">", 1);
}
}
if(!xcan) ASN__TEXT_INDENT(1, ilevel - 1);
if(encs) {
xer_tmp_enc_t *enc = encs;
xer_tmp_enc_t *end = encs + encs_count;
ssize_t control_size = 0;
er.encoded = 0;
cb = original_cb;
app_key = original_app_key;
qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order);
for(; enc < end; enc++) {
ASN__CALLBACK(enc->buffer, enc->offset);
FREEMEM(enc->buffer);
enc->buffer = 0;
control_size += enc->offset;
}
assert(control_size == er.encoded);
}
goto cleanup;
cb_failed:
ASN__ENCODE_FAILED;
cleanup:
if(encs) {
size_t n;
for(n = 0; n < encs_count; n++) {
FREEMEM(encs[n].buffer);
}
FREEMEM(encs);
}
ASN__ENCODED_OK(er);
}
int
SET_OF_print(const asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_TYPE_member_t *elm = td->elements;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int ret;
int i;
if(!sptr) return (cb("<absent>", 8, app_key) < 0) ? -1 : 0;
/* Dump preamble */
if(cb(td->name, strlen(td->name), app_key) < 0
|| cb(" ::= {", 6, app_key) < 0)
return -1;
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
if(!memb_ptr) continue;
_i_INDENT(1);
ret = elm->type->op->print_struct(elm->type, memb_ptr,
ilevel + 1, cb, app_key);
if(ret) return ret;
}
ilevel--;
_i_INDENT(1);
return (cb("}", 1, app_key) < 0) ? -1 : 0;
}
void
SET_OF_free(const asn_TYPE_descriptor_t *td, void *ptr,
enum asn_struct_free_method method) {
if(td && ptr) {
const asn_SET_OF_specifics_t *specs;
asn_TYPE_member_t *elm = td->elements;
asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr);
asn_struct_ctx_t *ctx; /* Decoder context */
int i;
/*
* Could not use set_of_empty() because of (*free)
* incompatibility.
*/
for(i = 0; i < list->count; i++) {
void *memb_ptr = list->array[i];
if(memb_ptr)
ASN_STRUCT_FREE(*elm->type, memb_ptr);
}
list->count = 0; /* No meaningful elements left */
asn_set_empty(list); /* Remove (list->array) */
specs = (const asn_SET_OF_specifics_t *)td->specifics;
ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset);
if(ctx->ptr) {
ASN_STRUCT_FREE(*elm->type, ctx->ptr);
ctx->ptr = 0;
}
switch(method) {
case ASFM_FREE_EVERYTHING:
FREEMEM(ptr);
break;
case ASFM_FREE_UNDERLYING:
break;
case ASFM_FREE_UNDERLYING_AND_RESET:
memset(ptr, 0, specs->struct_size);
break;
}
}
}
int
SET_OF_constraint(const asn_TYPE_descriptor_t *td, const void *sptr,
asn_app_constraint_failed_f *ctfailcb, void *app_key) {
const asn_TYPE_member_t *elm = td->elements;
asn_constr_check_f *constr;
const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr);
int i;
if(!sptr) {
ASN__CTFAIL(app_key, td, sptr,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
constr = elm->encoding_constraints.general_constraints;
if(!constr) constr = elm->type->encoding_constraints.general_constraints;
/*
* Iterate over the members of an array.
* Validate each in turn, until one fails.
*/
for(i = 0; i < list->count; i++) {
const void *memb_ptr = list->array[i];
int ret;
if(!memb_ptr) continue;
ret = constr(elm->type, memb_ptr, ctfailcb, app_key);
if(ret) return ret;
}
return 0;
}
#ifndef ASN_DISABLE_PER_SUPPORT
asn_dec_rval_t
SET_OF_decode_uper(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, void **sptr,
asn_per_data_t *pd) {
asn_dec_rval_t rv = {RC_OK, 0};
const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics;
const asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
const asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(ASN__STACK_OVERFLOW_CHECK(opt_codec_ctx))
ASN__DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) ASN__DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->encoding_constraints.per_constraints)
ct = &td->encoding_constraints.per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) ASN__DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
nelems = per_get_few_bits(pd, ct->effective_bits);
ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) ASN__DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = uper_get_length(pd, -1, 0, &repeat);
ASN_DEBUG("Got to decode %" ASN_PRI_SSIZE " elements (eff %d)",
nelems, (int)(ct ? ct->effective_bits : -1));
if(nelems < 0) ASN__DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->op->uper_decoder(opt_codec_ctx, elm->type,
elm->encoding_constraints.per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0) {
if(rv.consumed == 0 && nelems > 200) {
/* Protect from SET OF NULL compression bombs. */
ASN__DECODE_FAILED;
}
continue;
}
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
asn_enc_rval_t
SET_OF_encode_uper(const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, const void *sptr,
asn_per_outp_t *po) {
const asn_anonymous_set_ *list;
const asn_per_constraint_t *ct;
const asn_TYPE_member_t *elm = td->elements;
struct _el_buffer *encoded_els;
asn_enc_rval_t er = {0,0,0};
size_t encoded_edx;
if(!sptr) ASN__ENCODE_FAILED;
list = _A_CSET_FROM_VOID(sptr);
er.encoded = 0;
ASN_DEBUG("Encoding %s as SEQUENCE OF (%d)", td->name, list->count);
if(constraints) ct = &constraints->size;
else if(td->encoding_constraints.per_constraints)
ct = &td->encoding_constraints.per_constraints->size;
else ct = 0;
/* If extensible constraint, check if size is in root */
if(ct) {
int not_in_root =
(list->count < ct->lower_bound || list->count > ct->upper_bound);
ASN_DEBUG("lb %ld ub %ld %s", ct->lower_bound, ct->upper_bound,
ct->flags & APC_EXTENSIBLE ? "ext" : "fix");
if(ct->flags & APC_EXTENSIBLE) {
/* Declare whether size is in extension root */
if(per_put_few_bits(po, not_in_root, 1)) ASN__ENCODE_FAILED;
if(not_in_root) ct = 0;
} else if(not_in_root && ct->effective_bits >= 0) {
ASN__ENCODE_FAILED;
}
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
if(per_put_few_bits(po, list->count - ct->lower_bound,
ct->effective_bits))
ASN__ENCODE_FAILED;
} else if(list->count == 0) {
/* When the list is empty add only the length determinant
* X.691, #20.6 and #11.9.4.1
*/
if (uper_put_length(po, 0, 0)) {
ASN__ENCODE_FAILED;
}
ASN__ENCODED_OK(er);
}
/*
* Canonical UPER #22.1 mandates dynamic sorting of the SET OF elements
* according to their encodings. Build an array of the encoded elements.
*/
encoded_els = SET_OF__encode_sorted(elm, list, SOES_CUPER);
for(encoded_edx = 0; (ssize_t)encoded_edx < list->count;) {
ssize_t may_encode;
size_t edx;
int need_eom = 0;
if(ct && ct->effective_bits >= 0) {
may_encode = list->count;
} else {
may_encode =
uper_put_length(po, list->count - encoded_edx, &need_eom);
if(may_encode < 0) ASN__ENCODE_FAILED;
}
for(edx = encoded_edx; edx < encoded_edx + may_encode; edx++) {
const struct _el_buffer *el = &encoded_els[edx];
if(asn_put_many_bits(po, el->buf,
(8 * el->length) - el->bits_unused) < 0) {
break;
}
}
if(need_eom && uper_put_length(po, 0, 0))
ASN__ENCODE_FAILED; /* End of Message length */
encoded_edx += may_encode;
}
SET_OF__encode_sorted_free(encoded_els, list->count);
if((ssize_t)encoded_edx == list->count) {
ASN__ENCODED_OK(er);
} else {
ASN__ENCODE_FAILED;
}
}
asn_dec_rval_t
SET_OF_decode_aper(const asn_codec_ctx_t *opt_codec_ctx,
const asn_TYPE_descriptor_t *td,
const asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_dec_rval_t rv = {RC_OK, 0};
const asn_SET_OF_specifics_t *specs = (const asn_SET_OF_specifics_t *)td->specifics;
const asn_TYPE_member_t *elm = td->elements; /* Single one */
void *st = *sptr;
asn_anonymous_set_ *list;
const asn_per_constraint_t *ct;
int repeat = 0;
ssize_t nelems;
if(ASN__STACK_OVERFLOW_CHECK(opt_codec_ctx))
ASN__DECODE_FAILED;
/*
* Create the target structure if it is not present already.
*/
if(!st) {
st = *sptr = CALLOC(1, specs->struct_size);
if(!st) ASN__DECODE_FAILED;
}
list = _A_SET_FROM_VOID(st);
/* Figure out which constraints to use */
if(constraints) ct = &constraints->size;
else if(td->encoding_constraints.per_constraints)
ct = &td->encoding_constraints.per_constraints->size;
else ct = 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int value = per_get_few_bits(pd, 1);
if(value < 0) ASN__DECODE_STARVED;
if(value) ct = 0; /* Not restricted! */
}
if(ct && ct->effective_bits >= 0) {
/* X.691, #19.5: No length determinant */
nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound + 1);
ASN_DEBUG("Preparing to fetch %ld+%ld elements from %s",
(long)nelems, ct->lower_bound, td->name);
if(nelems < 0) ASN__DECODE_STARVED;
nelems += ct->lower_bound;
} else {
nelems = -1;
}
do {
int i;
if(nelems < 0) {
nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1,
ct ? ct->effective_bits : -1, &repeat);
ASN_DEBUG("Got to decode %d elements (eff %d)",
(int)nelems, (int)(ct ? ct->effective_bits : -1));
if(nelems < 0) ASN__DECODE_STARVED;
}
for(i = 0; i < nelems; i++) {
void *ptr = 0;
ASN_DEBUG("SET OF %s decoding", elm->type->name);
rv = elm->type->op->aper_decoder(opt_codec_ctx, elm->type,
elm->encoding_constraints.per_constraints, &ptr, pd);
ASN_DEBUG("%s SET OF %s decoded %d, %p",
td->name, elm->type->name, rv.code, ptr);
if(rv.code == RC_OK) {
if(ASN_SET_ADD(list, ptr) == 0)
continue;
ASN_DEBUG("Failed to add element into %s",
td->name);
/* Fall through */
rv.code = RC_FAIL;
} else {
ASN_DEBUG("Failed decoding %s of %s (SET OF)",
elm->type->name, td->name);
}
if(ptr) ASN_STRUCT_FREE(*elm->type, ptr);
return rv;
}
nelems = -1; /* Allow uper_get_length() */
} while(repeat);
ASN_DEBUG("Decoded %s as SET OF", td->name);
rv.code = RC_OK;
rv.consumed = 0;
return rv;
}
#endif /* ASN_DISABLE_PER_SUPPORT */
struct comparable_ptr {
const asn_TYPE_descriptor_t *td;
const void *sptr;
};
static int
SET_OF__compare_cb(const void *aptr, const void *bptr) {
const struct comparable_ptr *a = aptr;
const struct comparable_ptr *b = bptr;
assert(a->td == b->td);
return a->td->op->compare_struct(a->td, a->sptr, b->sptr);
}
int
SET_OF_compare(const asn_TYPE_descriptor_t *td, const void *aptr,
const void *bptr) {
const asn_anonymous_set_ *a = _A_CSET_FROM_VOID(aptr);
const asn_anonymous_set_ *b = _A_CSET_FROM_VOID(bptr);
if(a && b) {
struct comparable_ptr *asorted;
struct comparable_ptr *bsorted;
ssize_t common_length;
ssize_t idx;
if(a->count == 0) {
if(b->count) return -1;
return 0;
} else if(b->count == 0) {
return 1;
}
asorted = MALLOC(a->count * sizeof(asorted[0]));
bsorted = MALLOC(b->count * sizeof(bsorted[0]));
if(!asorted || !bsorted) {
FREEMEM(asorted);
FREEMEM(bsorted);
return -1;
}
for(idx = 0; idx < a->count; idx++) {
asorted[idx].td = td->elements->type;
asorted[idx].sptr = a->array[idx];
}
for(idx = 0; idx < b->count; idx++) {
bsorted[idx].td = td->elements->type;
bsorted[idx].sptr = b->array[idx];
}
qsort(asorted, a->count, sizeof(asorted[0]), SET_OF__compare_cb);
qsort(bsorted, b->count, sizeof(bsorted[0]), SET_OF__compare_cb);
common_length = (a->count < b->count ? a->count : b->count);
for(idx = 0; idx < common_length; idx++) {
int ret = td->elements->type->op->compare_struct(
td->elements->type, asorted[idx].sptr, bsorted[idx].sptr);
if(ret) {
FREEMEM(asorted);
FREEMEM(bsorted);
return ret;
}
}
FREEMEM(asorted);
FREEMEM(bsorted);
if(idx < b->count) /* more elements in b */
return -1; /* a is shorter, so put it first */
if(idx < a->count) return 1;
} else if(!a) {
return -1;
} else if(!b) {
return 1;
}
return 0;
}
asn_TYPE_operation_t asn_OP_SET_OF = {
SET_OF_free,
SET_OF_print,
SET_OF_compare,
SET_OF_decode_ber,
SET_OF_encode_der,
SET_OF_decode_xer,
SET_OF_encode_xer,
#ifdef ASN_DISABLE_OER_SUPPORT
0,
0,
#else
SET_OF_decode_oer,
SET_OF_encode_oer,
#endif
#ifdef ASN_DISABLE_PER_SUPPORT
0,
0,
0,
0,
#else
SET_OF_decode_uper,
SET_OF_encode_uper,
SET_OF_decode_aper,
0, /* SET_OF_encode_aper */
#endif /* ASN_DISABLE_PER_SUPPORT */
SET_OF_random_fill,
0 /* Use generic outmost tag fetcher */
};
asn_random_fill_result_t
SET_OF_random_fill(const asn_TYPE_descriptor_t *td, void **sptr,
const asn_encoding_constraints_t *constraints,
size_t max_length) {
const asn_SET_OF_specifics_t *specs =
(const asn_SET_OF_specifics_t *)td->specifics;
asn_random_fill_result_t res_ok = {ARFILL_OK, 0};
asn_random_fill_result_t result_failed = {ARFILL_FAILED, 0};
asn_random_fill_result_t result_skipped = {ARFILL_SKIPPED, 0};
const asn_TYPE_member_t *elm = td->elements;
void *st = *sptr;
long max_elements = 5;
long slb = 0; /* Lower size bound */
long sub = 0; /* Upper size bound */
size_t rnd_len;
if(max_length == 0) return result_skipped;
if(st == NULL) {
st = (*sptr = CALLOC(1, specs->struct_size));
if(st == NULL) {
return result_failed;
}
}
switch(asn_random_between(0, 6)) {
case 0: max_elements = 0; break;
case 1: max_elements = 1; break;
case 2: max_elements = 5; break;
case 3: max_elements = max_length; break;
case 4: max_elements = max_length / 2; break;
case 5: max_elements = max_length / 4; break;
default: break;
}
sub = slb + max_elements;
if(!constraints || !constraints->per_constraints)
constraints = &td->encoding_constraints;
if(constraints->per_constraints) {
const asn_per_constraint_t *pc = &constraints->per_constraints->size;
if(pc->flags & APC_SEMI_CONSTRAINED) {
slb = pc->lower_bound;
sub = pc->lower_bound + max_elements;
} else if(pc->flags & APC_CONSTRAINED) {
slb = pc->lower_bound;
sub = pc->upper_bound;
if(sub - slb > max_elements) sub = slb + max_elements;
}
}
/* Bias towards edges of allowed space */
switch(asn_random_between(-1, 4)) {
default:
case -1:
/* Prepare lengths somewhat outside of constrained range. */
if(constraints->per_constraints
&& (constraints->per_constraints->size.flags & APC_EXTENSIBLE)) {
switch(asn_random_between(0, 5)) {
default:
case 0:
rnd_len = 0;
break;
case 1:
if(slb > 0) {
rnd_len = slb - 1;
} else {
rnd_len = 0;
}
break;
case 2:
rnd_len = asn_random_between(0, slb);
break;
case 3:
if(sub < (ssize_t)max_length) {
rnd_len = sub + 1;
} else {
rnd_len = max_length;
}
break;
case 4:
if(sub < (ssize_t)max_length) {
rnd_len = asn_random_between(sub + 1, max_length);
} else {
rnd_len = max_length;
}
break;
case 5:
rnd_len = max_length;
break;
}
break;
}
/* Fall through */
case 0:
rnd_len = asn_random_between(slb, sub);
break;
case 1:
if(slb < sub) {
rnd_len = asn_random_between(slb + 1, sub);
break;
}
/* Fall through */
case 2:
rnd_len = asn_random_between(slb, slb);
break;
case 3:
if(slb < sub) {
rnd_len = asn_random_between(slb, sub - 1);
break;
}
/* Fall through */
case 4:
rnd_len = asn_random_between(sub, sub);
break;
}
for(; rnd_len > 0; rnd_len--) {
asn_anonymous_set_ *list = _A_SET_FROM_VOID(st);
void *ptr = 0;
asn_random_fill_result_t tmpres = elm->type->op->random_fill(
elm->type, &ptr, &elm->encoding_constraints,
(max_length > res_ok.length ? max_length - res_ok.length : 0)
/ rnd_len);
switch(tmpres.code) {
case ARFILL_OK:
ASN_SET_ADD(list, ptr);
res_ok.length += tmpres.length;
break;
case ARFILL_SKIPPED:
break;
case ARFILL_FAILED:
assert(ptr == 0);
return tmpres;
}
}
return res_ok;
}