1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#![doc(html_root_url = "https://docs.rs/tokio/1.0.1")]
#![allow(
    clippy::cognitive_complexity,
    clippy::large_enum_variant,
    clippy::needless_doctest_main
)]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unreachable_pub
)]
#![cfg_attr(docsrs, deny(broken_intra_doc_links))]
#![doc(test(
    no_crate_inject,
    attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
))]
#![cfg_attr(docsrs, feature(doc_cfg))]

//! A runtime for writing reliable network applications without compromising speed.
//!
//! Tokio is an event-driven, non-blocking I/O platform for writing asynchronous
//! applications with the Rust programming language. At a high level, it
//! provides a few major components:
//!
//! * Tools for [working with asynchronous tasks][tasks], including
//!   [synchronization primitives and channels][sync] and [timeouts, sleeps, and
//!   intervals][time].
//! * APIs for [performing asynchronous I/O][io], including [TCP and UDP][net] sockets,
//!   [filesystem][fs] operations, and [process] and [signal] management.
//! * A [runtime] for executing asynchronous code, including a task scheduler,
//!   an I/O driver backed by the operating system's event queue (epoll, kqueue,
//!   IOCP, etc...), and a high performance timer.
//!
//! Guide level documentation is found on the [website].
//!
//! [tasks]: #working-with-tasks
//! [sync]: crate::sync
//! [time]: crate::time
//! [io]: #asynchronous-io
//! [net]: crate::net
//! [fs]: crate::fs
//! [process]: crate::process
//! [signal]: crate::signal
//! [fs]: crate::fs
//! [runtime]: crate::runtime
//! [website]: https://tokio.rs/tokio/tutorial
//!
//! # A Tour of Tokio
//!
//! Tokio consists of a number of modules that provide a range of functionality
//! essential for implementing asynchronous applications in Rust. In this
//! section, we will take a brief tour of Tokio, summarizing the major APIs and
//! their uses.
//!
//! The easiest way to get started is to enable all features. Do this by
//! enabling the `full` feature flag:
//!
//! ```toml
//! tokio = { version = "1", features = ["full"] }
//! ```
//!
//! ### Authoring applications
//!
//! Tokio is great for writing applications and most users in this case shouldn't
//! worry too much about what features they should pick. If you're unsure, we suggest
//! going with `full` to ensure that you don't run into any road blocks while you're
//! building your application.
//!
//! #### Example
//!
//! This example shows the quickest way to get started with Tokio.
//!
//! ```toml
//! tokio = { version = "1", features = ["full"] }
//! ```
//!
//! ### Authoring libraries
//!
//! As a library author your goal should be to provide the lighest weight crate
//! that is based on Tokio. To achieve this you should ensure that you only enable
//! the features you need. This allows users to pick up your crate without having
//! to enable unnecessary features.
//!
//! #### Example
//!
//! This example shows how you may want to import features for a library that just
//! needs to `tokio::spawn` and use a `TcpStream`.
//!
//! ```toml
//! tokio = { version = "1", features = ["rt", "net"] }
//! ```
//!
//! ## Working With Tasks
//!
//! Asynchronous programs in Rust are based around lightweight, non-blocking
//! units of execution called [_tasks_][tasks]. The [`tokio::task`] module provides
//! important tools for working with tasks:
//!
//! * The [`spawn`] function and [`JoinHandle`] type, for scheduling a new task
//!   on the Tokio runtime and awaiting the output of a spawned task, respectively,
//! * Functions for [running blocking operations][blocking] in an asynchronous
//!   task context.
//!
//! The [`tokio::task`] module is present only when the "rt" feature flag
//! is enabled.
//!
//! [tasks]: task/index.html#what-are-tasks
//! [`tokio::task`]: crate::task
//! [`spawn`]: crate::task::spawn()
//! [`JoinHandle`]: crate::task::JoinHandle
//! [blocking]: task/index.html#blocking-and-yielding
//!
//! The [`tokio::sync`] module contains synchronization primitives to use when
//! needing to communicate or share data. These include:
//!
//! * channels ([`oneshot`], [`mpsc`], and [`watch`]), for sending values
//!   between tasks,
//! * a non-blocking [`Mutex`], for controlling access to a shared, mutable
//!   value,
//! * an asynchronous [`Barrier`] type, for multiple tasks to synchronize before
//!   beginning a computation.
//!
//! The `tokio::sync` module is present only when the "sync" feature flag is
//! enabled.
//!
//! [`tokio::sync`]: crate::sync
//! [`Mutex`]: crate::sync::Mutex
//! [`Barrier`]: crate::sync::Barrier
//! [`oneshot`]: crate::sync::oneshot
//! [`mpsc`]: crate::sync::mpsc
//! [`watch`]: crate::sync::watch
//!
//! The [`tokio::time`] module provides utilities for tracking time and
//! scheduling work. This includes functions for setting [timeouts][timeout] for
//! tasks, [sleeping][sleep] work to run in the future, or [repeating an operation at an
//! interval][interval].
//!
//! In order to use `tokio::time`, the "time" feature flag must be enabled.
//!
//! [`tokio::time`]: crate::time
//! [sleep]: crate::time::sleep()
//! [interval]: crate::time::interval()
//! [timeout]: crate::time::timeout()
//!
//! Finally, Tokio provides a _runtime_ for executing asynchronous tasks. Most
//! applications can use the [`#[tokio::main]`][main] macro to run their code on the
//! Tokio runtime. However, this macro provides only basic configuration options. As
//! an alternative, the [`tokio::runtime`] module provides more powerful APIs for configuring
//! and managing runtimes. You should use that module if the `#[tokio::main]` macro doesn't
//! provide the functionality you need.
//!
//! Using the runtime requires the "rt" or "rt-multi-thread" feature flags, to
//! enable the basic [single-threaded scheduler][rt] and the [thread-pool
//! scheduler][rt-multi-thread], respectively. See the [`runtime` module
//! documentation][rt-features] for details. In addition, the "macros" feature
//! flag enables the `#[tokio::main]` and `#[tokio::test]` attributes.
//!
//! [main]: attr.main.html
//! [`tokio::runtime`]: crate::runtime
//! [`Builder`]: crate::runtime::Builder
//! [`Runtime`]: crate::runtime::Runtime
//! [rt]: runtime/index.html#basic-scheduler
//! [rt-multi-thread]: runtime/index.html#threaded-scheduler
//! [rt-features]: runtime/index.html#runtime-scheduler
//!
//! ## CPU-bound tasks and blocking code
//!
//! Tokio is able to concurrently run many tasks on a few threads by repeatedly
//! swapping the currently running task on each thread. However, this kind of
//! swapping can only happen at `.await` points, so code that spends a long time
//! without reaching an `.await` will prevent other tasks from running. To
//! combat this, Tokio provides two kinds of threads: Core threads and blocking
//! threads. The core threads are where all asynchronous code runs, and Tokio
//! will by default spawn one for each CPU core. The blocking threads are
//! spawned on demand, can be used to run blocking code that would otherwise
//! block other tasks from running and are kept alive when not used for a certain
//! amount of time which can be configured with [`thread_keep_alive`].
//! Since it is not possible for Tokio to swap out blocking tasks, like it
//! can do with asynchronous code, the upper limit on the number of blocking
//! threads is very large. These limits can be configured on the [`Builder`].
//!
//! To spawn a blocking task, you should use the [`spawn_blocking`] function.
//!
//! [`Builder`]: crate::runtime::Builder
//! [`spawn_blocking`]: crate::task::spawn_blocking()
//! [`thread_keep_alive`]: crate::runtime::Builder::thread_keep_alive()
//!
//! ```
//! #[tokio::main]
//! async fn main() {
//!     // This is running on a core thread.
//!
//!     let blocking_task = tokio::task::spawn_blocking(|| {
//!         // This is running on a blocking thread.
//!         // Blocking here is ok.
//!     });
//!
//!     // We can wait for the blocking task like this:
//!     // If the blocking task panics, the unwrap below will propagate the
//!     // panic.
//!     blocking_task.await.unwrap();
//! }
//! ```
//!
//! If your code is CPU-bound and you wish to limit the number of threads used
//! to run it, you should run it on another thread pool such as [rayon]. You
//! can use an [`oneshot`] channel to send the result back to Tokio when the
//! rayon task finishes.
//!
//! [rayon]: https://docs.rs/rayon
//! [`oneshot`]: crate::sync::oneshot
//!
//! ## Asynchronous IO
//!
//! As well as scheduling and running tasks, Tokio provides everything you need
//! to perform input and output asynchronously.
//!
//! The [`tokio::io`] module provides Tokio's asynchronous core I/O primitives,
//! the [`AsyncRead`], [`AsyncWrite`], and [`AsyncBufRead`] traits. In addition,
//! when the "io-util" feature flag is enabled, it also provides combinators and
//! functions for working with these traits, forming as an asynchronous
//! counterpart to [`std::io`].
//!
//! Tokio also includes APIs for performing various kinds of I/O and interacting
//! with the operating system asynchronously. These include:
//!
//! * [`tokio::net`], which contains non-blocking versions of [TCP], [UDP], and
//!   [Unix Domain Sockets][UDS] (enabled by the "net" feature flag),
//! * [`tokio::fs`], similar to [`std::fs`] but for performing filesystem I/O
//!   asynchronously (enabled by the "fs" feature flag),
//! * [`tokio::signal`], for asynchronously handling Unix and Windows OS signals
//!   (enabled by the "signal" feature flag),
//! * [`tokio::process`], for spawning and managing child processes (enabled by
//!   the "process" feature flag).
//!
//! [`tokio::io`]: crate::io
//! [`AsyncRead`]: crate::io::AsyncRead
//! [`AsyncWrite`]: crate::io::AsyncWrite
//! [`AsyncBufRead`]: crate::io::AsyncBufRead
//! [`std::io`]: std::io
//! [`tokio::net`]: crate::net
//! [TCP]: crate::net::tcp
//! [UDP]: crate::net::UdpSocket
//! [UDS]: crate::net::unix
//! [`tokio::fs`]: crate::fs
//! [`std::fs`]: std::fs
//! [`tokio::signal`]: crate::signal
//! [`tokio::process`]: crate::process
//!
//! # Examples
//!
//! A simple TCP echo server:
//!
//! ```no_run
//! use tokio::net::TcpListener;
//! use tokio::io::{AsyncReadExt, AsyncWriteExt};
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//!     let listener = TcpListener::bind("127.0.0.1:8080").await?;
//!
//!     loop {
//!         let (mut socket, _) = listener.accept().await?;
//!
//!         tokio::spawn(async move {
//!             let mut buf = [0; 1024];
//!
//!             // In a loop, read data from the socket and write the data back.
//!             loop {
//!                 let n = match socket.read(&mut buf).await {
//!                     // socket closed
//!                     Ok(n) if n == 0 => return,
//!                     Ok(n) => n,
//!                     Err(e) => {
//!                         eprintln!("failed to read from socket; err = {:?}", e);
//!                         return;
//!                     }
//!                 };
//!
//!                 // Write the data back
//!                 if let Err(e) = socket.write_all(&buf[0..n]).await {
//!                     eprintln!("failed to write to socket; err = {:?}", e);
//!                     return;
//!                 }
//!             }
//!         });
//!     }
//! }
//! ```
//!
//! ## Feature flags
//!
//! Tokio uses a set of [feature flags] to reduce the amount of compiled code. It
//! is possible to just enable certain features over others. By default, Tokio
//! does not enable any features but allows one to enable a subset for their use
//! case. Below is a list of the available feature flags. You may also notice
//! above each function, struct and trait there is listed one or more feature flags
//! that are required for that item to be used. If you are new to Tokio it is
//! recommended that you use the `full` feature flag which will enable all public APIs.
//! Beware though that this will pull in many extra dependencies that you may not
//! need.
//!
//! - `full`: Enables all Tokio public API features listed below.
//! - `rt`: Enables `tokio::spawn`, the basic (current thread) scheduler,
//!         and non-scheduler utilities.
//! - `rt-multi-thread`: Enables the heavier, multi-threaded, work-stealing scheduler.
//! - `io-util`: Enables the IO based `Ext` traits.
//! - `io-std`: Enable `Stdout`, `Stdin` and `Stderr` types.
//! - `net`: Enables `tokio::net` types such as `TcpStream`, `UnixStream` and `UdpSocket`,
//!          as well as (on Unix-like systems) `AsyncFd`
//! - `time`: Enables `tokio::time` types and allows the schedulers to enable
//!           the built in timer.
//! - `process`: Enables `tokio::process` types.
//! - `macros`: Enables `#[tokio::main]` and `#[tokio::test]` macros.
//! - `sync`: Enables all `tokio::sync` types.
//! - `signal`: Enables all `tokio::signal` types.
//! - `fs`: Enables `tokio::fs` types.
//! - `test-util`: Enables testing based infrastructure for the Tokio runtime.
//!
//! _Note: `AsyncRead` and `AsyncWrite` traits do not require any features and are
//! always available._
//!
//! ### Internal features
//!
//! These features do not expose any new API, but influence internal
//! implementation aspects of Tokio, and can pull in additional
//! dependencies.
//!
//! - `parking_lot`: As a potential optimization, use the _parking_lot_ crate's
//! synchronization primitives internally. MSRV may increase according to the
//! _parking_lot_ release in use.
//!
//! ### Unstable features
//!
//! These feature flags enable **unstable** features. The public API may break in 1.x
//! releases. To enable these features, the `--cfg tokio_unstable` must be passed to
//! `rustc` when compiling. This is easiest done using the `RUSTFLAGS` env variable:
//! `RUSTFLAGS="--cfg tokio_unstable"`.
//!
//! - `tracing`: Enables tracing events.
//!
//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section

// Includes re-exports used by macros.
//
// This module is not intended to be part of the public API. In general, any
// `doc(hidden)` code is not part of Tokio's public and stable API.
#[macro_use]
#[doc(hidden)]
pub mod macros;

cfg_fs! {
    pub mod fs;
}

mod future;

pub mod io;
pub mod net;

mod loom;
mod park;

cfg_process! {
    pub mod process;
}

#[cfg(any(feature = "net", feature = "fs", feature = "io-std"))]
mod blocking;

cfg_rt! {
    pub mod runtime;
}

pub(crate) mod coop;

cfg_signal! {
    pub mod signal;
}

cfg_signal_internal! {
    #[cfg(not(feature = "signal"))]
    #[allow(dead_code)]
    #[allow(unreachable_pub)]
    pub(crate) mod signal;
}

cfg_sync! {
    pub mod sync;
}
cfg_not_sync! {
    mod sync;
}

pub mod task;
cfg_rt! {
    pub use task::spawn;
}

cfg_time! {
    pub mod time;
}

mod util;

/// Due to the `Stream` trait's inclusion in `std` landing later than Tokio's 1.0
/// release, most of the Tokio stream utilities have been moved into the [`tokio-stream`]
/// crate.
///
/// # Why was `Stream` not included in Tokio 1.0?
///
/// Originally, we had planned to ship Tokio 1.0 with a stable `Stream` type
/// but unfortunetly the [RFC] had not been merged in time for `Stream` to
/// reach `std` on a stable compiler in time for the 1.0 release of Tokio. For
/// this reason, the team has decided to move all `Stream` based utilities to
/// the [`tokio-stream`] crate. While this is not ideal, once `Stream` has made
/// it into the standard library and the MSRV period has passed, we will implement
/// stream for our different types.
///
/// While this may seem unfortunate, not all is lost as you can get much of the
/// `Stream` support with `async/await` and `while let` loops. It is also possible
/// to create a `impl Stream` from `async fn` using the [`async-stream`] crate.
///
/// [`tokio-stream`]: https://docs.rs/tokio-stream
/// [`async-stream`]: https://docs.rs/async-stream
/// [RFC]: https://github.com/rust-lang/rfcs/pull/2996
///
/// # Example
///
/// Convert a [`sync::mpsc::Receiver`] to an `impl Stream`.
///
/// ```rust,no_run
/// use tokio::sync::mpsc;
///
/// let (tx, mut rx) = mpsc::channel::<usize>(16);
///
/// let stream = async_stream::stream! {
///     while let Some(item) = rx.recv().await {
///         yield item;
///     }
/// };
/// ```
pub mod stream {}

cfg_macros! {
    /// Implementation detail of the `select!` macro. This macro is **not**
    /// intended to be used as part of the public API and is permitted to
    /// change.
    #[doc(hidden)]
    pub use tokio_macros::select_priv_declare_output_enum;

    cfg_rt! {
        #[cfg(feature = "rt-multi-thread")]
        #[cfg(not(test))] // Work around for rust-lang/rust#62127
        #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
        pub use tokio_macros::main;

        #[cfg(feature = "rt-multi-thread")]
        #[cfg_attr(docsrs, doc(cfg(feature = "macros")))]
        pub use tokio_macros::test;

        cfg_not_rt_multi_thread! {
            #[cfg(not(test))] // Work around for rust-lang/rust#62127
            pub use tokio_macros::main_rt as main;
            pub use tokio_macros::test_rt as test;
        }
    }

    // Always fail if rt is not enabled.
    cfg_not_rt! {
        #[cfg(not(test))]
        pub use tokio_macros::main_fail as main;
        pub use tokio_macros::test_fail as test;
    }
}

// TODO: rm
#[cfg(feature = "io-util")]
#[cfg(test)]
fn is_unpin<T: Unpin>() {}