1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
use crate::io::{Interest, PollEvented, ReadBuf, Ready}; use crate::net::{to_socket_addrs, ToSocketAddrs}; use std::convert::TryFrom; use std::fmt; use std::io; use std::net::{self, Ipv4Addr, Ipv6Addr, SocketAddr}; use std::task::{Context, Poll}; cfg_net! { /// A UDP socket /// /// UDP is "connectionless", unlike TCP. Meaning, regardless of what address you've bound to, a `UdpSocket` /// is free to communicate with many different remotes. In tokio there are basically two main ways to use `UdpSocket`: /// /// * one to many: [`bind`](`UdpSocket::bind`) and use [`send_to`](`UdpSocket::send_to`) /// and [`recv_from`](`UdpSocket::recv_from`) to communicate with many different addresses /// * one to one: [`connect`](`UdpSocket::connect`) and associate with a single address, using [`send`](`UdpSocket::send`) /// and [`recv`](`UdpSocket::recv`) to communicate only with that remote address /// /// `UdpSocket` can also be used concurrently to `send_to` and `recv_from` in different tasks, /// all that's required is that you `Arc<UdpSocket>` and clone a reference for each task. /// /// # Streams /// /// If you need to listen over UDP and produce a [`Stream`], you can look /// at [`UdpFramed`]. /// /// [`UdpFramed`]: https://docs.rs/tokio-util/latest/tokio_util/udp/struct.UdpFramed.html /// [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html /// /// # Example: one to many (bind) /// /// Using `bind` we can create a simple echo server that sends and recv's with many different clients: /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; /// let mut buf = [0; 1024]; /// loop { /// let (len, addr) = sock.recv_from(&mut buf).await?; /// println!("{:?} bytes received from {:?}", len, addr); /// /// let len = sock.send_to(&buf[..len], addr).await?; /// println!("{:?} bytes sent", len); /// } /// } /// ``` /// /// # Example: one to one (connect) /// /// Or using `connect` we can echo with a single remote address using `send` and `recv`: /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; /// /// let remote_addr = "127.0.0.1:59611"; /// sock.connect(remote_addr).await?; /// let mut buf = [0; 1024]; /// loop { /// let len = sock.recv(&mut buf).await?; /// println!("{:?} bytes received from {:?}", len, remote_addr); /// /// let len = sock.send(&buf[..len]).await?; /// println!("{:?} bytes sent", len); /// } /// } /// ``` /// /// # Example: Sending/Receiving concurrently /// /// Because `send_to` and `recv_from` take `&self`. It's perfectly alright to `Arc<UdpSocket>` /// and share the references to multiple tasks, in order to send/receive concurrently. Here is /// a similar "echo" example but that supports concurrent sending/receiving: /// /// ```no_run /// use tokio::{net::UdpSocket, sync::mpsc}; /// use std::{io, net::SocketAddr, sync::Arc}; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?; /// let r = Arc::new(sock); /// let s = r.clone(); /// let (tx, mut rx) = mpsc::channel::<(Vec<u8>, SocketAddr)>(1_000); /// /// tokio::spawn(async move { /// while let Some((bytes, addr)) = rx.recv().await { /// let len = s.send_to(&bytes, &addr).await.unwrap(); /// println!("{:?} bytes sent", len); /// } /// }); /// /// let mut buf = [0; 1024]; /// loop { /// let (len, addr) = r.recv_from(&mut buf).await?; /// println!("{:?} bytes received from {:?}", len, addr); /// tx.send((buf[..len].to_vec(), addr)).await.unwrap(); /// } /// } /// ``` /// pub struct UdpSocket { io: PollEvented<mio::net::UdpSocket>, } } impl UdpSocket { /// This function will create a new UDP socket and attempt to bind it to /// the `addr` provided. /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let sock = UdpSocket::bind("0.0.0.0:8080").await?; /// // use `sock` /// # let _ = sock; /// Ok(()) /// } /// ``` pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<UdpSocket> { let addrs = to_socket_addrs(addr).await?; let mut last_err = None; for addr in addrs { match UdpSocket::bind_addr(addr) { Ok(socket) => return Ok(socket), Err(e) => last_err = Some(e), } } Err(last_err.unwrap_or_else(|| { io::Error::new( io::ErrorKind::InvalidInput, "could not resolve to any address", ) })) } fn bind_addr(addr: SocketAddr) -> io::Result<UdpSocket> { let sys = mio::net::UdpSocket::bind(addr)?; UdpSocket::new(sys) } fn new(socket: mio::net::UdpSocket) -> io::Result<UdpSocket> { let io = PollEvented::new(socket)?; Ok(UdpSocket { io }) } /// Creates new `UdpSocket` from a previously bound `std::net::UdpSocket`. /// /// This function is intended to be used to wrap a UDP socket from the /// standard library in the Tokio equivalent. The conversion assumes nothing /// about the underlying socket; it is left up to the user to set it in /// non-blocking mode. /// /// This can be used in conjunction with socket2's `Socket` interface to /// configure a socket before it's handed off, such as setting options like /// `reuse_address` or binding to multiple addresses. /// /// # Panics /// /// This function panics if thread-local runtime is not set. /// /// The runtime is usually set implicitly when this function is called /// from a future driven by a tokio runtime, otherwise runtime can be set /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function. /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// # use std::{io, net::SocketAddr}; /// /// # #[tokio::main] /// # async fn main() -> io::Result<()> { /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap(); /// let std_sock = std::net::UdpSocket::bind(addr)?; /// std_sock.set_nonblocking(true)?; /// let sock = UdpSocket::from_std(std_sock)?; /// // use `sock` /// # Ok(()) /// # } /// ``` pub fn from_std(socket: net::UdpSocket) -> io::Result<UdpSocket> { let io = mio::net::UdpSocket::from_std(socket); UdpSocket::new(io) } /// Returns the local address that this socket is bound to. /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// # use std::{io, net::SocketAddr}; /// /// # #[tokio::main] /// # async fn main() -> io::Result<()> { /// let addr = "0.0.0.0:8080".parse::<SocketAddr>().unwrap(); /// let sock = UdpSocket::bind(addr).await?; /// // the address the socket is bound to /// let local_addr = sock.local_addr()?; /// # Ok(()) /// # } /// ``` pub fn local_addr(&self) -> io::Result<SocketAddr> { self.io.local_addr() } /// Connects the UDP socket setting the default destination for send() and /// limiting packets that are read via recv from the address specified in /// `addr`. /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// # use std::{io, net::SocketAddr}; /// /// # #[tokio::main] /// # async fn main() -> io::Result<()> { /// let sock = UdpSocket::bind("0.0.0.0:8080".parse::<SocketAddr>().unwrap()).await?; /// /// let remote_addr = "127.0.0.1:59600".parse::<SocketAddr>().unwrap(); /// sock.connect(remote_addr).await?; /// let mut buf = [0u8; 32]; /// // recv from remote_addr /// let len = sock.recv(&mut buf).await?; /// // send to remote_addr /// let _len = sock.send(&buf[..len]).await?; /// # Ok(()) /// # } /// ``` pub async fn connect<A: ToSocketAddrs>(&self, addr: A) -> io::Result<()> { let addrs = to_socket_addrs(addr).await?; let mut last_err = None; for addr in addrs { match self.io.connect(addr) { Ok(_) => return Ok(()), Err(e) => last_err = Some(e), } } Err(last_err.unwrap_or_else(|| { io::Error::new( io::ErrorKind::InvalidInput, "could not resolve to any address", ) })) } /// Wait for any of the requested ready states. /// /// This function is usually paired with `try_recv()` or `try_send()`. It /// can be used to concurrently recv / send to the same socket on a single /// task without splitting the socket. /// /// The function may complete without the socket being ready. This is a /// false-positive and attempting an operation will return with /// `io::ErrorKind::WouldBlock`. /// /// # Examples /// /// Concurrently receive from and send to the socket on the same task /// without splitting. /// /// ```no_run /// use tokio::io::{self, Interest}; /// use tokio::net::UdpSocket; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// loop { /// let ready = socket.ready(Interest::READABLE | Interest::WRITABLE).await?; /// /// if ready.is_readable() { /// // The buffer is **not** included in the async task and will only exist /// // on the stack. /// let mut data = [0; 1024]; /// match socket.try_recv(&mut data[..]) { /// Ok(n) => { /// println!("received {:?}", &data[..n]); /// } /// // False-positive, continue /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} /// Err(e) => { /// return Err(e); /// } /// } /// } /// /// if ready.is_writable() { /// // Write some data /// match socket.try_send(b"hello world") { /// Ok(n) => { /// println!("sent {} bytes", n); /// } /// // False-positive, continue /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {} /// Err(e) => { /// return Err(e); /// } /// } /// } /// } /// } /// ``` pub async fn ready(&self, interest: Interest) -> io::Result<Ready> { let event = self.io.registration().readiness(interest).await?; Ok(event.ready) } /// Wait for the socket to become writable. /// /// This function is equivalent to `ready(Interest::WRITABLE)` and is /// usually paired with `try_send()` or `try_send_to()`. /// /// The function may complete without the socket being writable. This is a /// false-positive and attempting a `try_send()` will return with /// `io::ErrorKind::WouldBlock`. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Bind socket /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// loop { /// // Wait for the socket to be writable /// socket.writable().await?; /// /// // Try to send data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match socket.try_send(b"hello world") { /// Ok(n) => { /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub async fn writable(&self) -> io::Result<()> { self.ready(Interest::WRITABLE).await?; Ok(()) } /// Sends data on the socket to the remote address that the socket is /// connected to. /// /// The [`connect`] method will connect this socket to a remote address. /// This method will fail if the socket is not connected. /// /// [`connect`]: method@Self::connect /// /// # Return /// /// On success, the number of bytes sent is returned, otherwise, the /// encountered error is returned. /// /// # Examples /// /// ```no_run /// use tokio::io; /// use tokio::net::UdpSocket; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Bind socket /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// // Send a message /// socket.send(b"hello world").await?; /// /// Ok(()) /// } /// ``` pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { self.io .registration() .async_io(Interest::WRITABLE, || self.io.send(buf)) .await } /// Attempts to send data on the socket to the remote address to which it /// was previously `connect`ed. /// /// The [`connect`] method will connect this socket to a remote address. /// This method will fail if the socket is not connected. /// /// Note that on multiple calls to a `poll_*` method in the send direction, /// only the `Waker` from the `Context` passed to the most recent call will /// be scheduled to receive a wakeup. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the socket is not available to write /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. /// /// [`connect`]: method@Self::connect pub fn poll_send(&self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> { self.io .registration() .poll_write_io(cx, || self.io.send(buf)) } /// Try to send data on the socket to the remote address to which it is /// connected. /// /// When the socket buffer is full, `Err(io::ErrorKind::WouldBlock)` is /// returned. This function is usually paired with `writable()`. /// /// # Returns /// /// If successful, `Ok(n)` is returned, where `n` is the number of bytes /// sent. If the socket is not ready to send data, /// `Err(ErrorKind::WouldBlock)` is returned. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Bind a UDP socket /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// /// // Connect to a peer /// socket.connect("127.0.0.1:8081").await?; /// /// loop { /// // Wait for the socket to be writable /// socket.writable().await?; /// /// // Try to send data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match socket.try_send(b"hello world") { /// Ok(n) => { /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_send(&self, buf: &[u8]) -> io::Result<usize> { self.io .registration() .try_io(Interest::WRITABLE, || self.io.send(buf)) } /// Wait for the socket to become readable. /// /// This function is equivalent to `ready(Interest::READABLE)` and is usually /// paired with `try_recv()`. /// /// The function may complete without the socket being readable. This is a /// false-positive and attempting a `try_recv()` will return with /// `io::ErrorKind::WouldBlock`. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Connect to a peer /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// loop { /// // Wait for the socket to be readable /// socket.readable().await?; /// /// // The buffer is **not** included in the async task and will /// // only exist on the stack. /// let mut buf = [0; 1024]; /// /// // Try to recv data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match socket.try_recv(&mut buf) { /// Ok(n) => { /// println!("GOT {:?}", &buf[..n]); /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub async fn readable(&self) -> io::Result<()> { self.ready(Interest::READABLE).await?; Ok(()) } /// Receives a single datagram message on the socket from the remote address /// to which it is connected. On success, returns the number of bytes read. /// /// The function must be called with valid byte array `buf` of sufficient /// size to hold the message bytes. If a message is too long to fit in the /// supplied buffer, excess bytes may be discarded. /// /// The [`connect`] method will connect this socket to a remote address. /// This method will fail if the socket is not connected. /// /// [`connect`]: method@Self::connect /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Bind socket /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// let mut buf = vec![0; 10]; /// let n = socket.recv(&mut buf).await?; /// /// println!("received {} bytes {:?}", n, &buf[..n]); /// /// Ok(()) /// } /// ``` pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { self.io .registration() .async_io(Interest::READABLE, || self.io.recv(buf)) .await } /// Attempts to receive a single datagram message on the socket from the remote /// address to which it is `connect`ed. /// /// The [`connect`] method will connect this socket to a remote address. This method /// resolves to an error if the socket is not connected. /// /// Note that on multiple calls to a `poll_*` method in the recv direction, only the /// `Waker` from the `Context` passed to the most recent call will be scheduled to /// receive a wakeup. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the socket is not ready to read /// * `Poll::Ready(Ok(()))` reads data `ReadBuf` if the socket is ready /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. /// /// [`connect`]: method@Self::connect pub fn poll_recv(&self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>) -> Poll<io::Result<()>> { let n = ready!(self.io.registration().poll_read_io(cx, || { // Safety: will not read the maybe uinitialized bytes. let b = unsafe { &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; self.io.recv(b) }))?; // Safety: We trust `recv` to have filled up `n` bytes in the buffer. unsafe { buf.assume_init(n); } buf.advance(n); Poll::Ready(Ok(())) } /// Try to receive a single datagram message on the socket from the remote /// address to which it is connected. On success, returns the number of /// bytes read. /// /// The function must be called with valid byte array buf of sufficient size /// to hold the message bytes. If a message is too long to fit in the /// supplied buffer, excess bytes may be discarded. /// /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is /// returned. This function is usually paired with `readable()`. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Connect to a peer /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// loop { /// // Wait for the socket to be readable /// socket.readable().await?; /// /// // The buffer is **not** included in the async task and will /// // only exist on the stack. /// let mut buf = [0; 1024]; /// /// // Try to recv data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match socket.try_recv(&mut buf) { /// Ok(n) => { /// println!("GOT {:?}", &buf[..n]); /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_recv(&self, buf: &mut [u8]) -> io::Result<usize> { self.io .registration() .try_io(Interest::READABLE, || self.io.recv(buf)) } /// Sends data on the socket to the given address. On success, returns the /// number of bytes written. /// /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its /// documentation for concrete examples. /// /// It is possible for `addr` to yield multiple addresses, but `send_to` /// will only send data to the first address yielded by `addr`. /// /// This will return an error when the IP version of the local socket does /// not match that returned from [`ToSocketAddrs`]. /// /// [`ToSocketAddrs`]: crate::net::ToSocketAddrs /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// let len = socket.send_to(b"hello world", "127.0.0.1:8081").await?; /// /// println!("Sent {} bytes", len); /// /// Ok(()) /// } /// ``` pub async fn send_to<A: ToSocketAddrs>(&self, buf: &[u8], target: A) -> io::Result<usize> { let mut addrs = to_socket_addrs(target).await?; match addrs.next() { Some(target) => self.send_to_addr(buf, target).await, None => Err(io::Error::new( io::ErrorKind::InvalidInput, "no addresses to send data to", )), } } /// Attempts to send data on the socket to a given address. /// /// Note that on multiple calls to a `poll_*` method in the send direction, only the /// `Waker` from the `Context` passed to the most recent call will be scheduled to /// receive a wakeup. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the socket is not ready to write /// * `Poll::Ready(Ok(n))` `n` is the number of bytes sent. /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. pub fn poll_send_to( &self, cx: &mut Context<'_>, buf: &[u8], target: SocketAddr, ) -> Poll<io::Result<usize>> { self.io .registration() .poll_write_io(cx, || self.io.send_to(buf, target)) } /// Try to send data on the socket to the given address, but if the send is /// blocked this will return right away. /// /// This function is usually paired with `writable()`. /// /// # Returns /// /// If successfull, returns the number of bytes sent /// /// Users should ensure that when the remote cannot receive, the /// [`ErrorKind::WouldBlock`] is properly handled. An error can also occur /// if the IP version of the socket does not match that of `target`. /// /// [`ErrorKind::WouldBlock`]: std::io::ErrorKind::WouldBlock /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::error::Error; /// use std::io; /// /// #[tokio::main] /// async fn main() -> Result<(), Box<dyn Error>> { /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// /// let dst = "127.0.0.1:8081".parse()?; /// /// loop { /// socket.writable().await?; /// /// match socket.try_send_to(&b"hello world"[..], dst) { /// Ok(sent) => { /// println!("sent {} bytes", sent); /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// // Writable false positive. /// continue; /// } /// Err(e) => return Err(e.into()), /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_send_to(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { self.io .registration() .try_io(Interest::WRITABLE, || self.io.send_to(buf, target)) } async fn send_to_addr(&self, buf: &[u8], target: SocketAddr) -> io::Result<usize> { self.io .registration() .async_io(Interest::WRITABLE, || self.io.send_to(buf, target)) .await } /// Receives a single datagram message on the socket. On success, returns /// the number of bytes read and the origin. /// /// The function must be called with valid byte array `buf` of sufficient /// size to hold the message bytes. If a message is too long to fit in the /// supplied buffer, excess bytes may be discarded. /// /// # Example /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// /// let mut buf = vec![0u8; 32]; /// let (len, addr) = socket.recv_from(&mut buf).await?; /// /// println!("received {:?} bytes from {:?}", len, addr); /// /// Ok(()) /// } /// ``` pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.io .registration() .async_io(Interest::READABLE, || self.io.recv_from(buf)) .await } /// Attempts to receive a single datagram on the socket. /// /// Note that on multiple calls to a `poll_*` method in the recv direction, only the /// `Waker` from the `Context` passed to the most recent call will be scheduled to /// receive a wakeup. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the socket is not ready to read /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. pub fn poll_recv_from( &self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>, ) -> Poll<io::Result<SocketAddr>> { let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { // Safety: will not read the maybe uinitialized bytes. let b = unsafe { &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; self.io.recv_from(b) }))?; // Safety: We trust `recv` to have filled up `n` bytes in the buffer. unsafe { buf.assume_init(n); } buf.advance(n); Poll::Ready(Ok(addr)) } /// Try to receive a single datagram message on the socket. On success, /// returns the number of bytes read and the origin. /// /// The function must be called with valid byte array buf of sufficient size /// to hold the message bytes. If a message is too long to fit in the /// supplied buffer, excess bytes may be discarded. /// /// When there is no pending data, `Err(io::ErrorKind::WouldBlock)` is /// returned. This function is usually paired with `readable()`. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Connect to a peer /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// socket.connect("127.0.0.1:8081").await?; /// /// loop { /// // Wait for the socket to be readable /// socket.readable().await?; /// /// // The buffer is **not** included in the async task and will /// // only exist on the stack. /// let mut buf = [0; 1024]; /// /// // Try to recv data, this may still fail with `WouldBlock` /// // if the readiness event is a false positive. /// match socket.try_recv_from(&mut buf) { /// Ok((n, _addr)) => { /// println!("GOT {:?}", &buf[..n]); /// break; /// } /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// continue; /// } /// Err(e) => { /// return Err(e); /// } /// } /// } /// /// Ok(()) /// } /// ``` pub fn try_recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.io .registration() .try_io(Interest::READABLE, || self.io.recv_from(buf)) } /// Receives data from the socket, without removing it from the input queue. /// On success, returns the number of bytes read and the address from whence /// the data came. /// /// # Notes /// /// On Windows, if the data is larger than the buffer specified, the buffer /// is filled with the first part of the data, and peek_from returns the error /// WSAEMSGSIZE(10040). The excess data is lost. /// Make sure to always use a sufficiently large buffer to hold the /// maximum UDP packet size, which can be up to 65536 bytes in size. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// let socket = UdpSocket::bind("127.0.0.1:8080").await?; /// /// let mut buf = vec![0u8; 32]; /// let (len, addr) = socket.peek_from(&mut buf).await?; /// /// println!("peeked {:?} bytes from {:?}", len, addr); /// /// Ok(()) /// } /// ``` pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.io .registration() .async_io(Interest::READABLE, || self.io.peek_from(buf)) .await } /// Receives data from the socket, without removing it from the input queue. /// On success, returns the number of bytes read. /// /// # Notes /// /// Note that on multiple calls to a `poll_*` method in the recv direction, only the /// `Waker` from the `Context` passed to the most recent call will be scheduled to /// receive a wakeup /// /// On Windows, if the data is larger than the buffer specified, the buffer /// is filled with the first part of the data, and peek returns the error /// WSAEMSGSIZE(10040). The excess data is lost. /// Make sure to always use a sufficiently large buffer to hold the /// maximum UDP packet size, which can be up to 65536 bytes in size. /// /// # Return value /// /// The function returns: /// /// * `Poll::Pending` if the socket is not ready to read /// * `Poll::Ready(Ok(addr))` reads data from `addr` into `ReadBuf` if the socket is ready /// * `Poll::Ready(Err(e))` if an error is encountered. /// /// # Errors /// /// This function may encounter any standard I/O error except `WouldBlock`. pub fn poll_peek_from( &self, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>, ) -> Poll<io::Result<SocketAddr>> { let (n, addr) = ready!(self.io.registration().poll_read_io(cx, || { // Safety: will not read the maybe uinitialized bytes. let b = unsafe { &mut *(buf.unfilled_mut() as *mut [std::mem::MaybeUninit<u8>] as *mut [u8]) }; self.io.peek_from(b) }))?; // Safety: We trust `recv` to have filled up `n` bytes in the buffer. unsafe { buf.assume_init(n); } buf.advance(n); Poll::Ready(Ok(addr)) } /// Gets the value of the `SO_BROADCAST` option for this socket. /// /// For more information about this option, see [`set_broadcast`]. /// /// [`set_broadcast`]: method@Self::set_broadcast pub fn broadcast(&self) -> io::Result<bool> { self.io.broadcast() } /// Sets the value of the `SO_BROADCAST` option for this socket. /// /// When enabled, this socket is allowed to send packets to a broadcast /// address. pub fn set_broadcast(&self, on: bool) -> io::Result<()> { self.io.set_broadcast(on) } /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see [`set_multicast_loop_v4`]. /// /// [`set_multicast_loop_v4`]: method@Self::set_multicast_loop_v4 pub fn multicast_loop_v4(&self) -> io::Result<bool> { self.io.multicast_loop_v4() } /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// If enabled, multicast packets will be looped back to the local socket. /// /// # Note /// /// This may not have any affect on IPv6 sockets. pub fn set_multicast_loop_v4(&self, on: bool) -> io::Result<()> { self.io.set_multicast_loop_v4(on) } /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// For more information about this option, see [`set_multicast_ttl_v4`]. /// /// [`set_multicast_ttl_v4`]: method@Self::set_multicast_ttl_v4 pub fn multicast_ttl_v4(&self) -> io::Result<u32> { self.io.multicast_ttl_v4() } /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// Indicates the time-to-live value of outgoing multicast packets for /// this socket. The default value is 1 which means that multicast packets /// don't leave the local network unless explicitly requested. /// /// # Note /// /// This may not have any affect on IPv6 sockets. pub fn set_multicast_ttl_v4(&self, ttl: u32) -> io::Result<()> { self.io.set_multicast_ttl_v4(ttl) } /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see [`set_multicast_loop_v6`]. /// /// [`set_multicast_loop_v6`]: method@Self::set_multicast_loop_v6 pub fn multicast_loop_v6(&self) -> io::Result<bool> { self.io.multicast_loop_v6() } /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// Controls whether this socket sees the multicast packets it sends itself. /// /// # Note /// /// This may not have any affect on IPv4 sockets. pub fn set_multicast_loop_v6(&self, on: bool) -> io::Result<()> { self.io.set_multicast_loop_v6(on) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`set_ttl`]. /// /// [`set_ttl`]: method@Self::set_ttl /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// # use std::io; /// /// # async fn dox() -> io::Result<()> { /// let sock = UdpSocket::bind("127.0.0.1:8080").await?; /// /// println!("{:?}", sock.ttl()?); /// # Ok(()) /// # } /// ``` pub fn ttl(&self) -> io::Result<u32> { self.io.ttl() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ```no_run /// use tokio::net::UdpSocket; /// # use std::io; /// /// # async fn dox() -> io::Result<()> { /// let sock = UdpSocket::bind("127.0.0.1:8080").await?; /// sock.set_ttl(60)?; /// /// # Ok(()) /// # } /// ``` pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.io.set_ttl(ttl) } /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// address of the local interface with which the system should join the /// multicast group. If it's equal to `INADDR_ANY` then an appropriate /// interface is chosen by the system. pub fn join_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { self.io.join_multicast_v4(&multiaddr, &interface) } /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// index of the interface to join/leave (or 0 to indicate any interface). pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.join_multicast_v6(multiaddr, interface) } /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. /// /// For more information about this option, see [`join_multicast_v4`]. /// /// [`join_multicast_v4`]: method@Self::join_multicast_v4 pub fn leave_multicast_v4(&self, multiaddr: Ipv4Addr, interface: Ipv4Addr) -> io::Result<()> { self.io.leave_multicast_v4(&multiaddr, &interface) } /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. /// /// For more information about this option, see [`join_multicast_v6`]. /// /// [`join_multicast_v6`]: method@Self::join_multicast_v6 pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.io.leave_multicast_v6(multiaddr, interface) } /// Returns the value of the `SO_ERROR` option. /// /// # Examples /// ``` /// use tokio::net::UdpSocket; /// use std::io; /// /// #[tokio::main] /// async fn main() -> io::Result<()> { /// // Create a socket /// let socket = UdpSocket::bind("0.0.0.0:8080").await?; /// /// if let Ok(Some(err)) = socket.take_error() { /// println!("Got error: {:?}", err); /// } /// /// Ok(()) /// } /// ``` pub fn take_error(&self) -> io::Result<Option<io::Error>> { self.io.take_error() } } impl TryFrom<std::net::UdpSocket> for UdpSocket { type Error = io::Error; /// Consumes stream, returning the tokio I/O object. /// /// This is equivalent to /// [`UdpSocket::from_std(stream)`](UdpSocket::from_std). fn try_from(stream: std::net::UdpSocket) -> Result<Self, Self::Error> { Self::from_std(stream) } } impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.io.fmt(f) } } #[cfg(all(unix))] mod sys { use super::UdpSocket; use std::os::unix::prelude::*; impl AsRawFd for UdpSocket { fn as_raw_fd(&self) -> RawFd { self.io.as_raw_fd() } } } #[cfg(windows)] mod sys { use super::UdpSocket; use std::os::windows::prelude::*; impl AsRawSocket for UdpSocket { fn as_raw_socket(&self) -> RawSocket { self.io.as_raw_socket() } } }